Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Acad Audiol ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-35705187

RESUMO

BACKGROUND: Audiological manifestations of patients with PLA2G6-associated neurodegeneration are limited. OBJECTIVE: To analyze the audiological findings in a cohort of 13 children with infantile neuroaxonal dystrophy (INAD). METHOD: Patients underwent a battery of audiological tests including tympanometry, distortion product otoacoustic emissions, impedance audiometry, and Brainstem Auditory Evoked Potentials (BAEPs). RESULTS: Audiological studies revealed abnormal findings in 10 out of 13 children (77%). The findings indicated sensorineural hearing loss in six and auditory neuropathy spectrum disorder in four children. CONCLUSION: This study may extend the auditory findings for INAD. Additional studies on quality of life and cognitive-brain degeneration related to this disease are required before making appropriate recommendations for aural rehabilitation.

2.
Sci Rep ; 12(1): 3267, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228583

RESUMO

Complex febrile seizures (CFS), a subset of paediatric febrile seizures (FS), have been studied for their prognosis, epileptogenic potential and neurocognitive outcome. We evaluated their functional connectivity differences with simple febrile seizures (SFS) in children with recent-onset FS. Resting-state fMRI (rs-fMRI) datasets of 24 children with recently diagnosed FS (SFS-n = 11; CFS-n = 13) were analysed. Functional connectivity (FC) was estimated using time series correlation of seed region-to-whole-brain-voxels and network topology was assessed using graph theory measures. Regional connectivity differences were correlated with clinical characteristics (FDR corrected p < 0.05). CFS patients demonstrated increased FC of the bilateral middle temporal pole (MTP), and bilateral thalami when compared to SFS. Network topology study revealed increased clustering coefficient and decreased participation coefficient in basal ganglia and thalamus suggesting an inefficient-unbalanced network topology in patients with CFS. The number of seizure recurrences negatively correlated with the integration of Left Thalamus (r = - 0.58) and FC of Left MTP to 'Right Supplementary Motor and left Precentral' gyrus (r = - 0.53). The FC of Right MTP to Left Amygdala, Putamen, Parahippocampal, and Orbital Frontal Cortex (r = 0.61) and FC of Left Thalamus to left Putamen, Pallidum, Caudate, Thalamus Hippocampus and Insula (r 0.55) showed a positive correlation to the duration of the longest seizure. The findings of the current study report altered connectivity in children with CFS proportional to the seizure recurrence and duration. Regardless of the causal/consequential nature, such observations demonstrate the imprint of these disease-defining variables of febrile seizures on the developing brain.


Assuntos
Encéfalo/patologia , Convulsões Febris/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Criança , Humanos , Imageamento por Ressonância Magnética , Convulsões Febris/patologia
3.
Orphanet J Rare Dis ; 16(1): 465, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732213

RESUMO

BACKGROUND: Identification and characterisation of monogenic causes of complex neurological phenotypes are important for genetic counselling and prognostication. Bi-allelic pathogenic variants in the gene encoding GLRX5, a protein involved in the early steps of Fe-S cluster biogenesis, are rare and cause two distinct phenotypes: isolated sideroblastic anemia and a neurological phenotype with variant non-ketotic hyperglycinemia. In this study, we analysed the evolution of clinical and MRI findings and long-term outcome of patients with GLRX5 mutations. METHODS: Four patients from three Australian families of Lebanese descent were identified. All patients presented in childhood and were followed up into adult life through multiple clinical assessments. All were prescribed sodium benzoate. RESULTS: All patients (all females, age range 18-56 years) showed a complex neurological phenotype characterised by varying combinations of spastic paraparesis, length-dependent motor/sensory-motor axonal polyneuropathy, and psychiatric disturbances with variable intellectual disability. All had non-ketotic hyperglycinemia and a homozygous pathogenic c.151_153delAAG (p.K51del) change in GLRX5. Motor disability gradually progressed reaching moderate disability during adolescence and moderately severe disability during adult life. The major MRI finding was the upper cervical spinal cord signal changes with contrast enhancement noted in all and additional leukoencephalopathy in one. On follow up MRI, the white matter lesions diminished on a subsequent scan and then remained static over time. The spinal cord showed gliotic changes. Two patients have previously demonstrated low pyruvate dehydrogenase complex deficiency but none had plasma lactate elevation, nor biochemical evidence of branch-chain keto-dehydrogenase deficiency. Glycine levels reduced in patients that tolerated sodium benzoate, possibly stabilising clinical manifestations. CONCLUSIONS: This report demonstrates that the p.K51del GLRX5 variant causes a distinct and predictable neurological phenotype. The clinical assessments spanning from childhood to adult life enable physicians to infer the natural history of GLRX5 related neurological disorder. There may be widespread metabolic consequences, and optimal management is unknown.


Assuntos
Anemia Sideroblástica , Pessoas com Deficiência , Transtornos Motores , Adolescente , Adulto , Austrália , Feminino , Glutarredoxinas/genética , Humanos , Pessoa de Meia-Idade , Fenótipo , Adulto Jovem
4.
Neuromuscul Disord ; 31(9): 859-864, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34419324

RESUMO

Whole exome sequencing (WES), analyzed with GENESIS and WeGET, revealed a homozygous deletion in the C1QBP gene in a patient with progressive external ophthalmoplegia (PEO) and multiple mtDNA deletions. The gene encodes the mitochondria-located complementary 1 Q subcomponent-binding protein, involved in mitochondrial homeostasis. Biallelic mutations in C1QBP cause mitochondrial cardiomyopathy and/or PEO with variable age of onset. Our patient showed only late-onset PEO-plus syndrome without overt cardiac involvement. Available data suggest that early-onset cardiomyopathy variants localize in important structural domains and PEO-plus variants in the coiled-coil region. Our patient demonstrates that C1QBP mutations should be considered in individuals with PEO with or without cardiomyopathy.


Assuntos
Proteínas de Transporte/genética , Sequenciamento do Exoma , Proteínas Mitocondriais/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Adulto , DNA Mitocondrial/genética , Feminino , Homozigoto , Humanos , Mitocôndrias/genética , Mutação , Deleção de Sequência
5.
Int J Neonatal Screen ; 7(2)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069211

RESUMO

Maple syrup urine disease is caused by a deficiency of branched-chain alpha-ketoacid dehydrogenase, responsible for degradation of leucine, isoleucine, and valine. Biallelic pathogenic variants in BCKDHA, BCKDHB, or DBT genes result in enzyme deficiency. We report the case of a female infant who presented with mild gross motor delay at 4 months, and seizures with hypoglycaemia at 5 months. Newborn screening returned total leucine/isoleucine at the 99.5th centile of the population; however, as second-tier testing reported minimal alloisoleucine, the results were considered inconsistent with MSUD. Plasma amino acid and urine organic acid analyses at 5 months were, however, consistent with a diagnosis of MSUD. A brain MRI showed bilateral symmetrical T2 hyperintense signal abnormalities involving white matter, globus pallidus, thalamus, brainstem, and dentate nuclei with restricted diffusion. A repeat MRI 10 months post-dietary-intervention showed the resolution of these changes and progression in myelination. Her clinical phenotype, including protein tolerance, correlated with intermediate MSUD. Molecular analysis of all three genes identified two variants of uncertain significance, c.434-15_434-4del and c.365A>G (p. Tyr122Cys) in the DBT gene. The rate of leucine decarboxylation in fibroblasts was reduced, but not to the extent observed in classical MSUD patients, supporting an intermediate form of MSUD. Previously reported mRNA splicing studies supported a deleterious effect of the c.434-15_434-4del variant. This functional evidence and confirmation that the variants were in trans, permitted their reclassification as pathogenic and likely pathogenic, respectively, facilitating subsequent prenatal testing. This report highlights the challenges in identifying intermediate MSUD by newborn screening, reinforcing the importance of functional studies to confirm variant pathogenicity in this era of molecular diagnostics.

7.
J Mol Neurosci ; 71(11): 2219-2228, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33469851

RESUMO

Polymerase γ catalytic subunit (POLG), a nuclear gene, encodes the enzyme responsible for mitochondrial DNA (mtDNA) replication. POLG mutations are a major cause of inherited mitochondrial diseases. They present with varied phenotypes, age of onset, and severity. Reports on POLG mutations from India are limited. Hence, this study aimed to describe the clinico-pathological and molecular observations of POLG mutations. A total of 446 patients with clinical diagnosis of mitochondrial disorders were sequenced for all exons and intron-exon boundaries of POLG. Of these, 19 (4.26%) patients (M:F: 10:9) had POLG mutations. The age of onset ranged from 5 to 55 years with an overlapping phenotypic spectrum. Ptosis, peripheral neuropathy, seizures, and ataxia were the common neurological features observed. The most common clinical phenotype was chronic progressive external ophthalmoplegia (CPEO) and CPEO plus (n = 14). Muscle biopsy showed characteristic features of mitochondrial myopathy in fourteen patients (14/19) and respiratory chain enzyme deficiency in eleven patients (11/19). Multiple mtDNA deletions were seen in 47.36% (9/19) patients. Eight pathogenic POLG variations including two novel variations (p.G132R and p.V1106A) were identified. The common pathogenic mutation identified was p.L304R, being present in eight patients (42.1%) predominantly in the younger age group followed by p.W748S in four patients (21%). To the best of our knowledge, this is the first extensive study from India, highlights the clinico-pathological and molecular spectrum of POLG mutations.


Assuntos
DNA Polimerase gama/genética , Doenças Mitocondriais/genética , Mutação , Fenótipo , Adolescente , Adulto , Ataxia/genética , Ataxia/patologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/patologia , Músculo Esquelético/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Convulsões/genética , Convulsões/patologia
8.
J Neurol ; 268(6): 2192-2207, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33484326

RESUMO

BACKGROUND: Mitochondrial disorders are clinically complex and have highly variable phenotypes among all inherited disorders. Mutations in mitochon drial DNA (mtDNA) and nuclear genome or both have been reported in mitochondrial diseases suggesting common pathophysiological pathways. Considering the clinical heterogeneity of mitochondrial encephalopathy, lactic acidosis and stroke-like episodes (MELAS) phenotype including focal neurological deficits, it is important to look beyond mitochondrial gene mutation. METHODS: The clinical, histopathological, biochemical analysis for OXPHOS enzyme activity, and electron microscopic, and neuroimaging analysis was performed to diagnose 11 patients with MELAS syndrome with a multisystem presentation. In addition, whole exome sequencing (WES) and whole mitochondrial genome sequencing were performed to identify nuclear and mitochondrial mutations. RESULTS: Analysis of whole mtDNA sequence identified classical pathogenic mutation m.3243A > G in seven out of 11 patients. Exome sequencing identified pathogenic mutation in several nuclear genes associated with mitochondrial encephalopathy, sensorineural hearing loss, diabetes, epilepsy, seizure and cardiomyopathy (POLG, DGUOK, SUCLG2, TRNT1, LOXHD1, KCNQ1, KCNQ2, NEUROD1, MYH7) that may contribute to classical mitochondrial disease phenotype alone or in combination with m.3243A > G mutation. CONCLUSION: Individuals with MELAS exhibit clinical phenotypes with varying degree of severity affecting multiple systems including auditory, visual, cardiovascular, endocrine, and nervous system. This is the first report to show that nuclear genetic factors influence the clinical outcomes/manifestations of MELAS subjects alone or in combination with m.3243A > G mutation.


Assuntos
Acidose Láctica , Síndrome MELAS , Acidente Vascular Cerebral , DNA Mitocondrial/genética , Genes Mitocondriais , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/genética , Encefalomiopatias Mitocondriais , Mutação , Acidente Vascular Cerebral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA