Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643935

RESUMO

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) shows genetic predisposition, and large-scale genome-wide association studies (GWAS) are emerging, based on heterogeneous disease definitions. We investigated the genetic architecture of IBS defined according to gold standard Rome Criteria. METHODS: We conducted GWAS meta-analyses of Rome III IBS and its subtypes in 24,735 IBS cases and 77,149 asymptomatic control subjects from 2 independent European cohorts (UK Biobank and Lifelines). Single-nucleotide polymorphism (SNP)-based heritability (h2SNP) and genetic correlations (rg) with other traits were calculated. IBS risk loci were functionally annotated to identify candidate genes. Sensitivity and conditional analyses were conducted to assess impact of confounders. Polygenic risk scores were computed and tested in independent datasets. RESULTS: Rome III IBS showed significant SNP-heritability (up to 13%) and similar genetic architecture across subtypes, including those with manifestations at the opposite ends of the symptom spectrum (rg = 0.48 between IBS-D and IBS-C). Genetic correlations with other traits highlighted commonalities with family history of heart disease and hypertension, coronary artery disease, and angina pectoris (rg = 0.20-0.45), among others. Four independent GWAS signals (P < 5×10-8) were detected, including 2 novel loci for IBS (rs2035380) and IBS-mixed (rs2048419) that had been previously associated with hypertension and coronary artery disease. Functional annotation of GWAS risk loci revealed genes implicated in circadian rhythm (BMAL1), intestinal barrier (CLDN23), immunomodulation (MFHAS1), and the cyclic adenosine monophosphate pathway (ADCY2). Polygenic risk scores allowed the identification of individuals at increased risk of IBS (odds ratio, 1.34; P = 1.1×10-3). CONCLUSIONS: Rome III Criteria capture higher SNP-heritability than previously estimated for IBS. The identified link between IBS and cardiovascular traits may contribute to the delineation of alternative therapeutic strategies, warranting further investigation.

2.
Eur Heart J Open ; 4(2): oeae012, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38532851

RESUMO

Aims: Epidemiological research has shown relevant differences between sexes in clinical manifestations, severity, and progression of cardiovascular and metabolic disorders. To date, the mechanisms underlying these differences remain unknown. Given the rising incidence of such diseases, gender-specific research on established and emerging risk factors, such as dysfunction of glycaemic and/or lipid metabolism, of sex hormones and of gut microbiome, is of paramount importance. The relationships between sex hormones, gut microbiome, and host glycaemic and/or lipid metabolism are largely unknown even in the homoeostasis status. Yet this knowledge gap would be pivotal to pinpoint to key mechanisms that are likely to be disrupted in disease context. Methods and results: Here we present the Women4Health (W4H) cohort, a unique cohort comprising up to 300 healthy women followed up during a natural menstrual cycle, set up with the primary goal to investigate the combined role of sex hormones and gut microbiota variations in regulating host lipid and glucose metabolism during homoeostasis, using a multi-omics strategy. Additionally, the W4H cohort will take into consideration another ecosystem that is unique to women, the vaginal microbiome, investigating its interaction with gut microbiome and exploring-for the first time-its role in cardiometabolic disorders. Conclusion: The W4H cohort study lays a foundation for improving current knowledge of women-specific mechanisms in cardiometabolic regulation. It aspires to transform insights on host-microbiota interactions into prevention and therapeutic approaches for personalized health care.

3.
Cell Rep Med ; 5(2): 101430, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382466

RESUMO

Primary open-angle glaucoma (POAG), a leading cause of irreversible blindness globally, shows disparity in prevalence and manifestations across ancestries. We perform meta-analysis across 15 biobanks (of the Global Biobank Meta-analysis Initiative) (n = 1,487,441: cases = 26,848) and merge with previous multi-ancestry studies, with the combined dataset representing the largest and most diverse POAG study to date (n = 1,478,037: cases = 46,325) and identify 17 novel significant loci, 5 of which were ancestry specific. Gene-enrichment and transcriptome-wide association analyses implicate vascular and cancer genes, a fifth of which are primary ciliary related. We perform an extensive statistical analysis of SIX6 and CDKN2B-AS1 loci in human GTEx data and across large electronic health records showing interaction between SIX6 gene and causal variants in the chr9p21.3 locus, with expression effect on CDKN2A/B. Our results suggest that some POAG risk variants may be ancestry specific, sex specific, or both, and support the contribution of genes involved in programmed cell death in POAG pathogenesis.


Assuntos
Predisposição Genética para Doença , Glaucoma de Ângulo Aberto , Masculino , Feminino , Humanos , Predisposição Genética para Doença/genética , Glaucoma de Ângulo Aberto/genética , Glaucoma de Ângulo Aberto/epidemiologia , Polimorfismo de Nucleotídeo Único , Proliferação de Células , Biologia
4.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260294

RESUMO

Venous thromboembolism (VTE) is a significant contributor to morbidity and mortality, with large disparities in incidence rates between Black and White Americans. Polygenic risk scores (PRSs) limited to variants discovered in genome-wide association studies in European-ancestry samples can identify European-ancestry individuals at high risk of VTE. However, there is limited evidence on whether high-dimensional PRS constructed using more sophisticated methods and more diverse training data can enhance the predictive ability and their utility across diverse populations. We developed PRSs for VTE using summary statistics from the International Network against Venous Thrombosis (INVENT) consortium GWAS meta-analyses of European- (71,771 cases and 1,059,740 controls) and African-ancestry samples (7,482 cases and 129,975 controls). We used LDpred2 and PRSCSx to construct ancestry-specific and multi-ancestry PRSs and evaluated their performance in an independent European- (6,261 cases and 88,238 controls) and African-ancestry sample (1,385 cases and 12,569 controls). Multi-ancestry PRSs with weights tuned in European- and African-ancestry samples, respectively, outperformed ancestry-specific PRSs in European- (PRSCSXEUR: AUC=0.61 (0.60, 0.61), PRSCSX_combinedEUR: AUC=0.61 (0.60, 0.62)) and African-ancestry test samples (PRSCSXAFR: AUC=0.58 (0.57, 0.6), PRSCSX_combined AFR: AUC=0.59 (0.57, 0.60)). The highest fifth percentile of the best-performing PRS was associated with 1.9-fold and 1.68-fold increased risk for VTE among European- and African-ancestry subjects, respectively, relative to those in the middle stratum. These findings suggest that the multi-ancestry PRS may be used to identify individuals at highest risk for VTE and provide guidance for the most effective treatment strategy across diverse populations.

5.
Nature ; 625(7996): 813-821, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172637

RESUMO

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Assuntos
Bactérias , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos , Metagenoma , Humanos , Acetilgalactosamina/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Coortes , Simulação por Computador , Faecalibacterium prausnitzii/genética , Microbioma Gastrointestinal/genética , Genoma Humano/genética , Genótipo , Interações entre Hospedeiro e Microrganismos/genética , Técnicas In Vitro , Metagenoma/genética , Família Multigênica , Países Baixos , Tanzânia
7.
Cell Genom ; 3(1): 100241, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36777179

RESUMO

Polygenic risk scores (PRSs) have been widely explored in precision medicine. However, few studies have thoroughly investigated their best practices in global populations across different diseases. We here utilized data from Global Biobank Meta-analysis Initiative (GBMI) to explore methodological considerations and PRS performance in 9 different biobanks for 14 disease endpoints. Specifically, we constructed PRSs using pruning and thresholding (P + T) and PRS-continuous shrinkage (CS). For both methods, using a European-based linkage disequilibrium (LD) reference panel resulted in comparable or higher prediction accuracy compared with several other non-European-based panels. PRS-CS overall outperformed the classic P + T method, especially for endpoints with higher SNP-based heritability. Notably, prediction accuracy is heterogeneous across endpoints, biobanks, and ancestries, especially for asthma, which has known variation in disease prevalence across populations. Overall, we provide lessons for PRS construction, evaluation, and interpretation using GBMI resources and highlight the importance of best practices for PRS in the biobank-scale genomics era.

8.
J Cardiovasc Transl Res ; 16(6): 1251-1266, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36622581

RESUMO

The c.40_42delAGA variant in the phospholamban gene (PLN) has been associated with dilated and arrhythmogenic cardiomyopathy, with up to 70% of carriers experiencing a major cardiac event by age 70. However, there are carriers who remain asymptomatic at older ages. To understand the mechanisms behind this incomplete penetrance, we evaluated potential phenotypic and genetic modifiers in 74 PLN:c.40_42delAGA carriers identified in 36,339 participants of the Lifelines population cohort. Asymptomatic carriers (N = 48) showed shorter QRS duration (- 5.73 ms, q value = 0.001) compared to asymptomatic non-carriers, an effect we could replicate in two different independent cohorts. Furthermore, symptomatic carriers showed a higher correlation (rPearson = 0.17) between polygenic predisposition to higher QRS (PGSQRS) and QRS (p value = 1.98 × 10-8), suggesting that the effect of the genetic variation on cardiac rhythm might be increased in symptomatic carriers. Our results allow for improved clinical interpretation for asymptomatic carriers, while our approach could guide future studies on genetic diseases with incomplete penetrance.


Assuntos
Cardiomiopatias , Humanos , Idoso , Mutação , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Proteínas de Ligação ao Cálcio/genética , Genótipo
10.
Sci Rep ; 12(1): 9317, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35665752

RESUMO

Clinical and biomarker phenotypic associations for carriers of protein function-altering variants may help to elucidate gene function and health effects in populations. We genotyped 1127 Strong Heart Family Study participants for protein function-altering single nucleotide variants (SNV) and indels selected from a low coverage whole exome sequencing of American Indians. We tested the association of each SNV/indel with 35 cardiometabolic traits. Among 1206 variants (average minor allele count = 20, range of 1 to 1064), ~ 43% were not present in publicly available repositories. We identified seven SNV-trait significant associations including a missense SNV at ABCA10 (rs779392624, p = 8 × 10-9) associated with fasting triglycerides, which gene product is involved in macrophage lipid homeostasis. Among non-diabetic individuals, missense SNVs at four genes were associated with fasting insulin adjusted for BMI (PHIL, chr6:79,650,711, p = 2.1 × 10-6; TRPM3, rs760461668, p = 5 × 10-8; SPTY2D1, rs756851199, p = 1.6 × 10-8; and TSPO, rs566547284, p = 2.4 × 10-6). PHIL encoded protein is involved in pancreatic ß-cell proliferation and survival, and TRPM3 protein mediates calcium signaling in pancreatic ß-cells in response to glucose. A genetic risk score combining increasing insulin risk alleles of these four genes was associated with 53% (95% confidence interval 1.09, 2.15) increased odds of incident diabetes and 83% (95% confidence interval 1.35, 2.48) increased odds of impaired fasting glucose at follow-up. Our study uncovered novel gene-trait associations through the study of protein-coding variants and demonstrates the advantages of association screenings targeting diverse and high-risk populations to study variants absent in publicly available repositories.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/metabolismo , Jejum , Predisposição Genética para Doença , Glucose/metabolismo , Humanos , Insulina/genética , Polimorfismo de Nucleotídeo Único , Receptores de GABA/genética
11.
Nat Genet ; 54(2): 100-106, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115688

RESUMO

The human gut microbiome is a complex ecosystem that is involved in its host's metabolism, immunity and health. Although interindividual variations in gut microbial composition are mainly driven by environmental factors, some gut microorganisms are heritable and thus can be influenced by host genetics. In the past 5 years, 12 microbial genome-wide association studies (mbGWAS) with >1,000 participants have been published, yet only a few genetic loci have been consistently confirmed across multiple studies. Here we discuss the state of the art for mbGWAS, focusing on current challenges such as the heterogeneity of microbiome measurements and power issues, and we elaborate on potential future directions for genetic analysis of the microbiome.


Assuntos
Microbioma Gastrointestinal , Variação Genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Sistema ABO de Grupos Sanguíneos/genética , Variação Biológica da População , Fucosiltransferases/genética , Microbioma Gastrointestinal/genética , Genômica , Interações entre Hospedeiro e Microrganismos , Humanos , Lactase/genética , Polimorfismo de Nucleotídeo Único , Galactosídeo 2-alfa-L-Fucosiltransferase
12.
Nat Genet ; 54(2): 143-151, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115690

RESUMO

Host genetics are known to influence the gut microbiome, yet their role remains poorly understood. To robustly characterize these effects, we performed a genome-wide association study of 207 taxa and 205 pathways representing microbial composition and function in 7,738 participants of the Dutch Microbiome Project. Two robust, study-wide significant (P < 1.89 × 10-10) signals near the LCT and ABO genes were found to be associated with multiple microbial taxa and pathways and were replicated in two independent cohorts. The LCT locus associations seemed modulated by lactose intake, whereas those at ABO could be explained by participant secretor status determined by their FUT2 genotype. Twenty-two other loci showed suggestive evidence (P < 5 × 10-8) of association with microbial taxa and pathways. At a more lenient threshold, the number of loci we identified strongly correlated with trait heritability, suggesting that much larger sample sizes are needed to elucidate the remaining effects of host genetics on the gut microbiome.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Variação Genética , Interações entre Hospedeiro e Microrganismos , Lactase/genética , Bifidobacterium/fisiologia , Dieta , Fucosiltransferases/genética , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Redes e Vias Metabólicas , Metagenoma , Herança Multifatorial , Países Baixos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cloreto de Sódio na Dieta , Triglicerídeos/sangue , Galactosídeo 2-alfa-L-Fucosiltransferase
14.
Front Immunol ; 12: 662171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512620

RESUMO

Circulatory inflammatory proteins play a significant role in anti-Candida host immune defence. However, little is known about the genetic variation that contributes to the variability of inflammatory responses in response to C. albicans. To systematically characterize inflammatory responses in Candida infection, we profiled 91 circulatory inflammatory proteins in peripheral blood mononuclear cells (PBMCs) stimulated with C. albicans yeast isolated from 378 individuals of European origin from the 500 Functional Genomics (500FG) cohort of the Human Functional Genomics Project (HFGP) and Lifelines Deep cohort. To identify the genetic factors that determine variation in inflammatory protein responses, we correlated genome-wide single nucleotide polymorphism (SNP) genotypes with protein abundance (protein quantitative trait loci, pQTLs) produced by the Candida-stimulated PBMCs. Furthermore, we investigated whether differences in survival of candidaemia patients can be explained by modulating levels of inflammatory proteins. We identified five genome-wide significant pQTLs that modulate IL-8, MCP-2, MMP-1, and CCL3 in response to C. albicans. In addition, our genetic analysis suggested that GADD45G from rs10114707 locus that reached genome-wide significance could be a potential core gene that regulates a cytokine network upon Candida infection. Last but not least, we observed that a trans-pQTL marked from SNP rs7651677 at chromosome 3 that influences urokinase plasminogen activator (uPA) is strongly associated with patient survival (Psurvival = 3.52 x 10-5, OR 3). Overall, our genetic analysis showed that genetic variation determines the abundance of circulatory proteins in response to Candida infection.


Assuntos
Candidemia/genética , Candidemia/imunologia , Variação Genética , Genótipo , Inflamação/genética , Inflamação/microbiologia , Proteínas/análise , Locos de Características Quantitativas/genética , Adolescente , Adulto , Idoso , Estudos de Coortes , Citocinas/imunologia , Feminino , Humanos , Inflamação/imunologia , Leucócitos Mononucleares/microbiologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteômica , Adulto Jovem
15.
Genome Biol ; 22(1): 198, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229738

RESUMO

BACKGROUND: Recent studies highlight the role of metabolites in immune diseases, but it remains unknown how much of this effect is driven by genetic and non-genetic host factors. RESULT: We systematically investigate circulating metabolites in a cohort of 500 healthy subjects (500FG) in whom immune function and activity are deeply measured and whose genetics are profiled. Our data reveal that several major metabolic pathways, including the alanine/glutamate pathway and the arachidonic acid pathway, have a strong impact on cytokine production in response to ex vivo stimulation. We also examine the genetic regulation of metabolites associated with immune phenotypes through genome-wide association analysis and identify 29 significant loci, including eight novel independent loci. Of these, one locus (rs174584-FADS2) associated with arachidonic acid metabolism is causally associated with Crohn's disease, suggesting it is a potential therapeutic target. CONCLUSION: This study provides a comprehensive map of the integration between the blood metabolome and immune phenotypes, reveals novel genetic factors that regulate blood metabolite concentrations, and proposes an integrative approach for identifying new disease treatment targets.


Assuntos
Imunidade Inata/genética , Redes e Vias Metabólicas/genética , Fenótipo , Locos de Características Quantitativas , Adolescente , Adulto , Idoso , Alanina/sangue , Alanina/imunologia , Ácido Araquidônico/sangue , Ácido Araquidônico/imunologia , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Genômica/métodos , Ácido Glutâmico/sangue , Ácido Glutâmico/imunologia , Voluntários Saudáveis , Humanos , Masculino , Redes e Vias Metabólicas/imunologia , Metabolômica/métodos , Pessoa de Meia-Idade
17.
Nat Commun ; 11(1): 4930, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004804

RESUMO

Inference of causality between gene expression and complex traits using Mendelian randomization (MR) is confounded by pleiotropy and linkage disequilibrium (LD) of gene-expression quantitative trait loci (eQTL). Here, we propose an MR method, MR-link, that accounts for unobserved pleiotropy and LD by leveraging information from individual-level data, even when only one eQTL variant is present. In simulations, MR-link shows false-positive rates close to expectation (median 0.05) and high power (up to 0.89), outperforming all other tested MR methods and coloc. Application of MR-link to low-density lipoprotein cholesterol (LDL-C) measurements in 12,449 individuals with expression and protein QTL summary statistics from blood and liver identifies 25 genes causally linked to LDL-C. These include the known SORT1 and ApoE genes as well as PVRL2, located in the APOE locus, for which a causal role in liver was not known. Our results showcase the strength of MR-link for transcriptome-wide causal inferences.


Assuntos
LDL-Colesterol/sangue , Regulação da Expressão Gênica , Predisposição Genética para Doença , Modelos Genéticos , Locos de Características Quantitativas , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , LDL-Colesterol/metabolismo , Simulação por Computador , Conjuntos de Dados como Assunto , Pleiotropia Genética , Humanos , Desequilíbrio de Ligação , Metabolismo dos Lipídeos/genética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Herança Multifatorial , Nectinas/genética , Nectinas/metabolismo , Países Baixos , Proteômica , RNA-Seq
18.
Nat Commun ; 11(1): 3981, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769997

RESUMO

Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported. Functional experiments show that the thyroglobulin protein-altering variants P118L and G67S impact thyroglobulin secretion. Phenome-wide association analysis in the UK Biobank demonstrates the pleiotropic effects of TSH-associated variants and a polygenic score for higher TSH levels is associated with a reduced risk of thyroid cancer in the UK Biobank and three other independent studies. Two-sample Mendelian randomization using TSH index variants as instrumental variables suggests a protective effect of higher TSH levels (indicating lower thyroid function) on risk of thyroid cancer and goiter. Our findings highlight the pleiotropic effects of TSH-associated variants on thyroid function and growth of malignant and benign thyroid tumors.


Assuntos
Pleiotropia Genética , Estudo de Associação Genômica Ampla , Neoplasias da Glândula Tireoide/genética , Tireotropina/genética , Loci Gênicos , Predisposição Genética para Doença , Bócio/genética , Humanos , Análise da Randomização Mendeliana , Herança Multifatorial/genética , Mutação de Sentido Incorreto/genética , Fenótipo , Mapeamento Físico do Cromossomo , Prevalência , Fatores de Risco , Tireoglobulina/genética , Neoplasias da Glândula Tireoide/epidemiologia
19.
Front Genet ; 11: 613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582302

RESUMO

Coronavirus disease 2019 (COVID-19) shows a wide variation in expression and severity of symptoms, from very mild or no symptoms, to flu-like symptoms, and in more severe cases, to pneumonia, acute respiratory distress syndrome, and even death. Large differences in outcome have also been observed between males and females. The causes for this variability are likely to be multifactorial, and to include genetics. The SARS-CoV-2 virus responsible for the infection depends on two human genes: the human receptor angiotensin converting enzyme 2 (ACE2) for cell invasion, and the serine protease TMPRSS2 for S protein priming. Genetic variation in these two genes may thus modulate an individual's genetic predisposition to infection and virus clearance. While genetic data on COVID-19 patients is being gathered, we carried out a phenome-wide association scan (PheWAS) to investigate the role of these genes in other human phenotypes in the general population. We examined 178 quantitative phenotypes including cytokines and cardio-metabolic biomarkers, as well as usage of 58 medications in 36,339 volunteers from the Lifelines population cohort, in relation to 1,273 genetic variants located in or near ACE2 and TMPRSS2. While none reached our threshold for significance, we observed several interesting suggestive associations. For example, single nucleotide polymorphisms (SNPs) near the TMPRSS2 genes were associated with thrombocytes count (p = 1.8 × 10-5). SNPs within the ACE2 gene were associated with (1) the use of angiotensin II receptor blockers (ARBs) combination therapies (p = 5.7 × 10-4), an association that is significantly stronger in females (p dif f = 0.01), and (2) with the use of non-steroid anti-inflammatory and antirheumatic products (p = 5.5 × 10-4). While these associations need to be confirmed in larger sample sizes, they suggest that these variants could play a role in diseases such as thrombocytopenia, hypertension, and chronic inflammation that are often observed in the more severe COVID-19 cases. Further investigation of these genetic variants in the context of COVID-19 is thus promising for better understanding of disease variability. Full results are available at https://covid19research.nl.

20.
BMC Bioinformatics ; 21(1): 243, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532224

RESUMO

BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96-100%) and chromatin mark QTL (≥87-92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution).


Assuntos
Estudo de Associação Genômica Ampla/métodos , Locos de Características Quantitativas/imunologia , Contagem Corporal Total/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA