Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37853214

RESUMO

A series of bimetallic of FeCu metal-organic frameworks (MOFs) have been synthesised using a solvothermal process by varying the ratio between the two metals. Further, the bimetallic MOF catalysts were characterised by X-ray powder diffraction, scanning electron microscopy, and infrared spectroscopy techniques. Their catalytic properties for activation of peroxymonosulphate (PMS) have been tested by the removal of a model dye, rhodamine B. As a result, NH2-Fe2.4Cu1-MOF demonstrated the highest degradation, the effect of the ratio NH2-Fe2.4Cu1-MOF/PMS has been studied, and the main reactive species have been assessed. The application of these MOFs in powder form is difficult to handle in successive batch or flow systems. Thus, this study assessed the feasibility of growing NH2-Fe2,4Cu1-MOF on polyacrylonitrile (PAN) spheres using the one-pot solvothermal synthesis method. The optimisation of the catalytic activity of the synthesised composite (NH2-Fe2.4Cu1-MOF@PAN) has been evaluated by response surface methodology using a central composite face-centred experimental design matrix and selecting as independent variables: time, PMS concentration, and catalyst dosage. Based on the results, the optimisation of the operational conditions has been validated. At 2.5 mM PMS, 90 min, and 1.19 g·L-1 of catalyst dosage, maximum degradation (80.92%) has been achieved, which doubles the removal values obtained in previous studies with other MOFs. In addition, under these conditions, the catalyst has been proven to maintain its activity and stability for several cycles without activity loss.

2.
Foods ; 12(19)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37835298

RESUMO

Agri-food residues or by-products have increased their contribution to the global tally of unsustainably generated waste. These residues, characterized by their inherent physicochemical properties and rich in lignocellulosic composition, are progressively being recognized as valuable products that align with the principles of zero waste and circular economy advocated for by different government entities. Consequently, they are utilized as raw materials in other industrial sectors, such as the notable case of environmental remediation. This review highlights the substantial potential of thermochemical valorized agri-food residues, transformed into biochar and hydrochar, as versatile adsorbents in wastewater treatment and as promising alternatives in various environmental and energy-related applications. These materials, with their enhanced properties achieved through tailored engineering techniques, offer competent solutions with cost-effective and satisfactory results in applications in various environmental contexts such as removing pollutants from wastewater or green energy generation. This sustainable approach not only addresses environmental concerns but also paves the way for a more eco-friendly and resource-efficient future, making it an exciting prospect for diverse applications.

3.
Appl Microbiol Biotechnol ; 107(2-3): 719-733, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36602562

RESUMO

Laccase from Myceliophthora thermophila was immobilized using one-point and multi-point covalent attachment on both a native and a modified new commercial epoxy carrier (Immobead 150P). After 10 cycles of operation at pH 3.0 and temperature 70 °C, the multi-point covalently immobilized laccase on the modified Immobead 150P performed best in terms of immobilization characteristics, retaining 95% of its initial activity. Thermodynamic parameters of thermal inactivation emphasized the positive impact of the immobilization procedure. At 50 °C, the immobilized and free enzyme activity levels dropped by 27 and 73%, respectively, after 48 h of incubation. The immobilized enzyme enhanced its stability in alkaline conditions, resuming 95% of its original activity after 3 h at pH 9.0. Immobilization reduced substrate affinity because the free laccase's Km value was lower than that of the immobilized laccase. Finally, the application of immobilized laccase in an innovative wood treatment process was tested by grafting lauryl gallate (LG) in order to provide hydrophobic properties to the wood. The results showed a relative water contact angle of 85.7% for treated wood, whereas the control showed only 26.6%, after 4 min of contact between water and beechwood surface. KEY POINTS: • Multi-point covalent immobilization of a commercial laccase on a commercial support. • Enzymatic parameters generally improved by immobilization process. • New application of immobilized laccase: enzymatic-assisted wood hydrophobization.


Assuntos
Enzimas Imobilizadas , Lacase , Estabilidade Enzimática , Lacase/metabolismo , Concentração de Íons de Hidrogênio , Enzimas Imobilizadas/metabolismo , Água/química , Cinética
4.
Artigo em Inglês | MEDLINE | ID: mdl-35682435

RESUMO

In this study, the removal of persistent emerging and dangerous pollutants (pharmaceuticals and pathogens) in synthetic wastewater was evaluated by the application of heterogeneous Advanced Oxidation Processes. To do that, a Metal-Organic Framework (MOF), Basolite® F-300 was selected as a catalyst and combined with peroxymonosulfate (PMS) as oxidants in order to generate sulphate radicals. Several key parameters such as the PMS and Basolite® F-300 concentration were evaluated and optimized using a Central Composite Experimental Design for response surface methodology for the inactivation of Escherichia coli. The assessment of the degradation of an analgesic and antipyretic pharmaceutical, antipyrine, revealed that is necessary to increase the concentration of PMS and amount of Basolite® F-300, in order to diminish the treatment time. Finally, the PMS-Basolite® F-300 system can be used for at least four cycles without a reduction in its ability to disinfect and degrade persistent emerging and dangerous pollutants such as pharmaceuticals and pathogens.


Assuntos
Desinfecção , Poluentes Químicos da Água , Antipirina , Escherichia coli , Oxirredução , Peróxidos , Preparações Farmacêuticas , Poluentes Químicos da Água/análise
5.
Polymers (Basel) ; 10(6)2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966676

RESUMO

The capability of laccase from Myceliophthora thermophila to drive oxidative polymerization of Eucalyptus globulus Kraft lignin (KL) was studied as a previous step before applying this biotechnological approach for the manufacturing of medium-density fiberboards (MDF) at a pilot scale. This method, which improves the self-bonding capacity of wood fibers by lignin enzymatic cross-linking, mimics the natural process of lignification in living plants and trees. An interesting pathway to promote these interactions could be the addition of lignin to the system. The characterization of E. globulus KL after enzymatic treatment showed a decrease of phenolic groups as well as the aromatic protons without loss of aromaticity. There was also an extensive oxidative polymerization of the biomolecule. In the manufacture of self-bonded MDF, the synergy generated by the added lignin and laccase provided promising results. Thus, whenever laccase was present in the treatment, MDF showed an increase in mechanical and dimensional stability for increasing amounts of lignin. In a pilot scale, this method produced MDF that meets the requirements of the European standards for both thickness swell (TS) and internal bonding (IB) for indoor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA