Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 108(1): 94, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38212966

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a plasticizer that is used worldwide and raises concerns because of its prevalence in the environment and potential toxicity. Herein, the capability of Fusarium culmorum to degrade a high concentration (3 g/L) of DEHP as the sole carbon and energy source in solid-state fermentation (SSF) was studied. Cultures grown on glucose were used as controls. The biodegradation of DEHP by F. culmorum reached 96.9% within 312 h. This fungus produced a 3-fold higher esterase activity in DEHP-supplemented cultures than in control cultures (1288.9 and 443.2 U/L, respectively). In DEHP-supplemented cultures, nine bands with esterase activity (24.6, 31.2, 34.2, 39.5, 42.8, 62.1, 74.5, 134.5, and 214.5 kDa) were observed by zymography, which were different from those in control cultures and from those previously reported for cultures grown in submerged fermentation. This is the first study to report the DEHP biodegradation pathway by a microorganism grown in SSF. The study findings uncovered a novel biodegradation strategy by which high concentrations of DEHP could be biodegraded using two alternative pathways simultaneously. F. culmorum has an outstanding capability to efficiently degrade DEHP by inducing esterase production, representing an ecologically promising alternative for the development of environmental biotechnologies, which might help mitigate the negative impacts of environmental contamination by this phthalate. KEY POINTS: • F. culmorum has potential to tolerate and remove di(2-ethylhexyl) phthalate (DEHP) • Solid-state fermentation is an efficient system for DEHP degradation by F. culmorum • High concentrations of DEHP induce high levels of esterase production by F. culmorum.


Assuntos
Dietilexilftalato , Fusarium , Ácidos Ftálicos , Dietilexilftalato/metabolismo , Biodegradação Ambiental , Esterases/metabolismo
2.
J Food Sci ; 87(3): 957-967, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35157324

RESUMO

In recent decades, the food industry has focused on the search for potential sources of anthocyanins that are able to provide color to replace synthetic dyes and at the same time provide health benefits through food products. Thus, in the present work, we propose the Dahlia pinnata flower as a potential source of anthocyanins. The dahlia is a native, annual flower from Mexico with a wide diversity of shapes and colors. The ancestral use of the flower in several dishes, its abundance, and the intense color of the flowers known as black make the D. pinnata flower a suitable candidate to be considered as a potential source of anthocyanins. Thus, the aim of this research is the determination of its nutritional composition, anthocyanin profile, and antioxidant activity. For this purpose, proximate composition of petals was determined by the AOAC standard methods. Anthocyanins were extracted from the dried petals of the flower with 0.1% HCl in methanol and 70% aqueous acetone solution and purified through Amberlite-XAD7-HP resin. Then, the purified extracts were analyzed for antioxidant activity by the DPPH method and the anthocyanin profile was characterized by HPLC and UPLC-MS/MS. Results showed that D. pinnata flowers have a proximate composition similar to other important edible flowers with a high level of moisture (87%-92%) and fiber (6%-7%). The antioxidant activity of both purified extracts was considerable (2.6-12 g/ml) compared to other sources of anthocyanins. The anthocyanin profile of the purified extracts contains four main anthocyanins: delphinidin-3-glucoside, delphinidin-3-rutinoside, pelargonidin-3-sambubioside-5-glucoside, and peonidin-3-sambubioside-5-glucoside, the last two being uncommon as major anthocyanin components in other plant sources. PRACTICAL APPLICATION: We present a potential and novel source of anthocyanins based on anthocyanin content and antioxidant activity of Dahlia pinnata petals. On the basis of UPLC-MS/MS studies, we identified four main anthocyanins, so this information provides the opportunity to study the source in many areas such as natural pigment stabilization, food additives, and antioxidants.


Assuntos
Antocianinas , Dahlia , Antocianinas/análise , Antioxidantes/análise , Cromatografia Líquida , Flores/química , Espectrometria de Massas em Tandem
3.
J Hazard Mater ; 411: 125118, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33485228

RESUMO

Polyethylene (PE) is one of the most highly consumed petroleum-based polymers and its accumulation as waste causes environmental pollution. In this sense, the use of microorganisms and their enzymes represents the most ecofriendly and effective decontamination approach. In this work, molecular docking simulation for catalytic enzyme degradation of PE was carried out using individual enzymes: laccase (Lac), manganese peroxidase (MnP), lignin peroxidase (LiP) and unspecific peroxygenase (UnP). PE-binding energy, PE-binding affinity and dimensions of PE-binding sites in the enzyme cavity were calculated in each case. Four hypothetical PE biodegradation pathways were proposed using individual enzymes, and one pathway was proposed using a synergic enzyme combination. These results show that in nature, enzymes act in a synergic manner, using their specific features to undertake an extraordinarily effective sequential catalytic process for organopollutants degradation. In this process, Lac (oxidase) is crucial to provide hydrogen peroxide to the medium to ensure pollutant breakdown. UnP is a versatile enzyme that offers a promising practical application for the degradation of PE and other pollutants due to its cavity features. This is the first in silico report of PE enzymatic degradation, showing the mode of interaction of PE with enzymes as well as the degradation mechanism.


Assuntos
Lacase , Polietileno , Biodegradação Ambiental , Fungos , Lignina , Simulação de Acoplamento Molecular
4.
Ecotoxicol Environ Saf ; 170: 293-299, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530181

RESUMO

Di(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which is considered an endocrine disrupting pollutant. Growth kinetics and esterases activity by biochemical tests and polyacrylamide gel electrophoresis were characterized for Fusarium culmorum grown in DEHP-supplemented (1000 mg/L) medium as the only carbon source and in control medium with glucose. Intermediate compounds of biodegraded DEHP were identified by GC-MS. F. culmorum degraded 92% of DEHP within 36 h. DEHP was degraded to butanol, hexanal, catechol and acetic acid. It is suggested that the first two compounds would transform into butanediol and the last two would enter into the Krebs cycle and would be mineralized to CO2 and H2O. DEHP induced eight esterase isoforms, which were different to those constitutive isoforms produced in the control medium. It is suggested that five enzymes (25.7, 29.5, 31.8, 97.6 and 144.5 kDa) detected during the first 36 h be involved in the primary biodegradation of DEHP. The rest of the enzymes (45.9, 66.6 and 202.9 kDa) might be involved in the final steps for DEHP metabolism. F. culmorum has a promising practical application in the treatment of DEHP-contaminated environments because it can secrete specific esterase to breakdown high concentrations of DEHP in a short period of time. This research represents the first approach for the study of esterase involved in the DEHP degradation by fungi using this phthalate as the sole source of carbon and energy.


Assuntos
Dietilexilftalato/análise , Disruptores Endócrinos/análise , Poluentes Ambientais/análise , Fusarium/crescimento & desenvolvimento , Plastificantes/análise , Biodegradação Ambiental , Esterases/metabolismo , Fusarium/enzimologia , Cinética
5.
Fungal Biol ; 122(10): 991-997, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30227934

RESUMO

Dibutyl phthalate (DBP) is a plasticizer, whose presence in the environment as a pollutant has attained a great deal of attention due to its reported association with endocrine system disturbances on animals. Growth parameters, glucose uptake, percentage of removal efficiency (%E) of DBP, biodegradation constant of DBP (k) and half-life of DBP biodegradation (t1/2) were evaluated for Pleurotus ostreatus grown on media containing glucose and different concentrations of DBP (0, 500 and 1000 mg l-1). P. ostreatus degraded 99.6 % and 94 % of 500 and 1000 mg of DBP l-1 after 312 h and 504 h, respectively. The k was 0.0155 h-1 and 0.0043 h-1 for 500 and 1000 mg of DBP l-1, respectively. t1/2 was 44.7 h and 161 h for 500 and 1000 mg of DBP l-1, respectively. Intermediate compounds of biodegraded DBP were identified by GC-MS and a DBP biodegradation pathway was proposed using quantum chemical calculation. DBP might be metabolized to benzene and acetyl acetate, the first would be oxidated to muconic acid and the latter would enter into the Krebs cycle. P. ostreatus has the ability to degrade DBP and utilizes it as source of carbon and energy.


Assuntos
Dibutilftalato/metabolismo , Poluentes Ambientais/metabolismo , Pleurotus/metabolismo , Biodegradação Ambiental , Pleurotus/crescimento & desenvolvimento
6.
3 Biotech ; 8(1): 42, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29354353

RESUMO

Dibutyl phthalate (DBP) is a widely used plasticizer, whose presence in the environment as a pollutant raises concern because of its endocrine-disrupting toxicity. Growth kinetics, glucose uptake, biodegradation constant of DBP (k), half-life of DBP biodegradation (t1/2) and percentage of removal efficiency (%E) were evaluated for Fusarium culmorum grown on media containing glucose and different concentrations of DBP (500 and 1000 mg/l). Intermediate compounds of biodegraded DBP were identified by GC-MS and a novel DBP biodegradation pathway was proposed on the basis of the intermolecular flow of electrons of the intermediates identified using quantum chemical modeling. F. culmorum degraded 99% of both 1000 and 500 mg of DBP/l after an incubation period of 168 and 228 h, respectively. %E was 99.5 and 99.3 for 1000 and 500 mg of DBP/l, respectively. The k was 0.0164 and 0.0231 h-1 for 500 and 1000 mg of DBP/l, respectively. DBP was fully metabolized to fumaric and malic acids, which are compounds that enter into the Krebs cycle. F. culmorum has a promising ability for bioremediation of environments polluted with DBP because it efficiently degrades DBP and uses high concentrations of this compound as carbon and energy source.

7.
Ecotoxicol Environ Saf ; 147: 494-499, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28915396

RESUMO

Di(2-ethyl hexyl) phthalate (DEHP) is a plasticizer that interfere with endocrine systems in mammals. Growth parameters for Pleurotus ostreatus grown on media containing glucose and different concentrations of DEHP (0, 500 and 1000mg/L) were evaluated. The highest biomass production was observed in medium supplemented with 1000mg of DEHP/L. Half-life of DEHP biodegradation, biodegradation constant of DEHP, and percentage of removal efficiency (%E) were also determined. P. ostreatus degraded 100% of DEHP after 504h. %E was 99.3% and 98.4% for 500 and 1000mg of DEHP/L, respectively. Intermediate compounds of biodegraded DEHP were identified by GC-MS and a DEHP biodegradation pathway was proposed using quantum chemical investigation. DEHP might be metabolized through three pathways; a de-esterification pathway, an oxidation pathway and an oxidation-hydrolysis pathway, forming phthalic acid, acetic acid and butanediol, respectively. P. ostreatus degrades and uses (as carbon and energy source) high concentrations of DEHP.


Assuntos
Dietilexilftalato/análise , Disruptores Endócrinos/análise , Plastificantes/análise , Pleurotus/metabolismo , Animais , Biodegradação Ambiental , Biomassa , Biotransformação , Dietilexilftalato/metabolismo , Disruptores Endócrinos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Meia-Vida , Plastificantes/metabolismo , Pleurotus/crescimento & desenvolvimento
8.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 5): o529, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24860342

RESUMO

The title compound, C12H6Cl4S2, features an S-S bond [2.0252 (8) Å] that bridges two 2,3-di-chloro-phenyl rings with a C-S-S-C torsion angle of 88.35 (11)°. The benzene rings are normal one to the other with a dihedral angle of 89.83 (11)°. The crystal structure features inter-molecular Cl⋯Cl [3.4763 (11) Å] and π-π stacking inter-actions [centroid-centroid distances = 3.696 (1) and 3.641 (2) Å]. Intra-molecular C-H⋯S inter-actions are also observed.

9.
Acta Crystallogr Sect E Struct Rep Online ; 70(Pt 3): m92-3, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24764953

RESUMO

The title compound, [Pd(SC6H4F-p)Cl(PPh3)2]·0.5CH3OH, features a Pd(II) complex with two tri-phenyl-phosphane (PPh3) ligands arranged in a trans conformation, with one chloride and one 4-fluoro-benzene-thiol-ate ligand completing the coordination sphere, giving rise to a slightly distorted square-planar geometry of the Pd(II) ion. The methanol solvent mol-ecule is disordered about an inversion centre with an occupancy of 0.25 for each molecule. In the crystal, weak C-H⋯Cl hydrogen-bonding inter-actions between the complex mol-ecules generate chain frameworks parallel to [010].

10.
Acta Crystallogr Sect E Struct Rep Online ; 69(Pt 12): o1741-2, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24454198

RESUMO

In the cation of the title compound C9H14ON(+)·C3H2O3N3 (-), the benzyl-amine C-N bond subtends a dihedral angle of 78.3 (2)° with the phenyl ring. The cyanurate anion is in the usual keto-form and shows an r.m.s. deviation from planarity of 0.010 Å. In the crystal, the cyanurate anions form N-H⋯O hydrogen-bonded zigzag ribbons along [001]. These ribbons are crosslinked by the organocations via O-H⋯N and N-H⋯O hydrogen bonds, forming bilayers parallel to (010) which are held together along [010] by slipped π-π inter-actions between pairs of cyanurate anions [shortest contact distances C⋯C = 3.479 (2), O⋯N = 3.400 (2); centroid-centroid distance= 4.5946 (9) Å] and between cyanurate and phenyl rings [centroid-centroid distance = 3.7924 (12) Å, ring-ring angle = 11.99 (10)°].

11.
Inorg Chem ; 47(21): 9874-85, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18841933

RESUMO

The dimethyl-, di-n-butyl-, and diphenyltin(IV) dithiocarbamate (dtc) complexes [{R2Sn(L-dtc)}x] 1-7 (1, L = L1, R = Me; 2, L = L1, R = n-Bu; 3, L = L2, R = Me, x = infinity; 4, L = L2, R = n-Bu; 5, L = L3, R = Me, x = 2; 6, L = L3, R = n-Bu, x = 2; 7, L = L3, R = Ph, x = 2) have been prepared from a series of secondary amino acid (AA) homologues as starting materials: N-benzylglycine (alpha-AA derivative = L1), N-benzyl-3-aminopropionic acid (beta-AA derivative = L2), and N-benzyl-4-aminobutyric acid (gamma-AA derivative = L3). The resulting compounds have been characterized by elemental analysis, mass spectrometry, IR and NMR ((1)H, (13)C, and (119)Sn) spectroscopy, thermogravimetric analysis, and X-ray crystallography, showing that in all complexes both functional groups of the heteroleptic ligands are coordinated to the tin atoms. By X-ray diffraction analysis, it could be shown that [{Me2Sn(L2-dtc)}x] (3) is polymeric in the solid state, while the complexes derived from L3 (5-7) have dinuclear 18-membered macrocyclic structures of the composition [{R2Sn(L3-dtc)}2]. For the remaining compounds, it could not be established with certainty whether the structures are macrocyclic or polymeric. A theoretical investigation at the B3LYP/SBKJC(d,p) level of theory indicated that the alpha-AA-dtc complexes might have trinuclear macrocyclic structures. The macrocyclic complexes 5-7 have a double-calix-shaped conformation with two cavities large enough for the inclusion of aliphatic and aromatic guest molecules. They are self-complementary for the formation of supramolecuar synthons that give rise to 1D molecular arrangements in the solid state. Preliminary recognition experiments with tetrabutylammonium acetate have shown that the [{R2Sn(L3-dtc)}2] macrocycles 6 and 7 might interact simultaneously with anions (AcO(-)), which coordinate to the tin atoms, and organic cations (TBA(+)), which accommodate within the hydrophobic cavity (ion-pair recognition).


Assuntos
Aminoácidos/química , Compostos Macrocíclicos/química , Compostos Orgânicos de Estanho/química , Tiocarbamatos/química , Ânions/química , Cátions/química , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Compostos Macrocíclicos/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Orgânicos de Estanho/síntese química , Espectrofotometria Infravermelho , Termogravimetria , Tiocarbamatos/síntese química
12.
Inorg Chem ; 47(21): 9804-12, 2008 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-18826217

RESUMO

The potassium bis-dithiocarbamate (bis-dtc) salts of 1,3-bis(benzylaminomethyl)benzene (1,3-Bn-ambdtc), 1,3-bis(iso-butylaminomethyl)benzene (1,3-(i)Bu-ambdtc), 1,4-bis(benzylaminomethyl)benzene (1,4-Bn-ambdtc), and 1,4-bis(iso-butylaminomethyl)benzene (1,4-(i)Bu-ambdtc) were reacted with three different diorganotin dichlorides (R2SnCl2 with R = Me, (n)Bu, and Ph) in 1:1 stoichiometric ratios to give the corresponding diorganotin bis-dithiocarbamates. Additionally, the dimethyltin bis-dithiocarbamate of 1,1'-bis(benzylaminomethyl)ferrocene (1,1'-Bn-amfdtc) was prepared. The resulting complexes have been characterized as far as possible by elemental analysis, FAB(+) mass spectrometry, IR and NMR ((1)H, (13)C, and (119)Sn) spectroscopy, and single-crystal X-ray diffraction, showing that the tin complexes are dinuclear 24- and 26-membered macrocyclic species of composition [{R2Sn(bis-dtc)}2]. As shown by (119)Sn NMR spectroscopy, the tin centers are hexa-coordinated in all cases; however, two different coordination environments are possible, as detected by single-crystal X-ray diffraction. In the dimethyltin derivatives of 1,3-Bn-ambdtc, 1,3-(i)Bu-ambdtc, 1,4-Bn-ambdtc, and 1,1'-Bn-amfdtc and the di-n-butyltin derivative of 1,3-(i)Bu-ambdtc, the metal atoms are embedded in skewed-trapezoidal-bipyramidal coordination polyhedra with asymmetrically coordinating trans-oriented dtc groups. In contrast, in the diphenyltin derivative 1,3-(i)Bu-ambdtc, the metal centers have distorted octahedral coordination with symmetrically coordinating cis-oriented dtc functions. Thus, for the complexes derived from 1,3-Bn/(i)Bu-ambdtc, two different macrocyclic structures were observed. In the dimethyl- and di-n-butyltin derivatives, the bridging bis-dtc ligands adopt U-shaped conformations, while in the case of the diphenyltin derivative, the conformation is L-shaped. Furthermore, two different macrocyclic ring conformations can occur, which differ in the spatial orientation of the substituents attached to the nitrogen atoms (Bn or (i)Bu). The dimethyltin derivatives of 1,4-Bn-ambdtc and 1,1'-Bn-amfdtc have cavities, in which aromatic rings are accommodated in the solid state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA