Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Biomolecules ; 13(6)2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37371467

RESUMO

Pannexin-1 (Panx1) hemichannel is a non-selective transmembrane channel that may play important roles in intercellular signaling by allowing the permeation of ions and metabolites, such as ATP. Although recent evidence shows that the Panx1 hemichannel is involved in controlling excitatory synaptic transmission, the role of Panx1 in inhibitory transmission remains unknown. Here, we studied the contribution of Panx1 to the GABAergic synaptic efficacy onto CA1 pyramidal neurons (PyNs) by using patch-clamp recordings and pharmacological approaches in wild-type and Panx1 knock-out (Panx1-KO) mice. We reported that blockage of the Panx1 hemichannel with the mimetic peptide 10Panx1 increases the synaptic level of endocannabinoids (eCB) and the activation of cannabinoid receptors type 1 (CB1Rs), which results in a decrease in hippocampal GABAergic efficacy, shifting excitation/inhibition (E/I) balance toward excitation and facilitating the induction of long-term potentiation. Our finding provides important insight unveiling that Panx1 can strongly influence the overall neuronal excitability and play a key role in shaping synaptic changes affecting the amplitude and direction of plasticity, as well as learning and memory processes.


Assuntos
Hipocampo , Proteínas do Tecido Nervoso , Plasticidade Neuronal , Células Piramidais , Animais , Camundongos , Conexinas/genética , Conexinas/metabolismo , Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Transmissão Sináptica
2.
Cells ; 11(22)2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429074

RESUMO

Enhanced activity and overexpression of Pannexin 1 (Panx1) channels contribute to neuronal pathologies such as epilepsy and Alzheimer's disease (AD). The Panx1 channel ablation alters the hippocampus's glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, Panx1-knockout (Panx1-KO) mice still retain the ability to learn, suggesting that compensatory mechanisms stabilize their neuronal activity. Here, we show that the absence of Panx1 in the adult brain promotes a series of structural and functional modifications in the Panx1-KO hippocampal synapses, preserving spontaneous activity. Compared to the wild-type (WT) condition, the adult hippocampal neurons of Panx1-KO mice exhibit enhanced excitability, a more complex dendritic branching, enhanced spine maturation, and an increased proportion of multiple synaptic contacts. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in the actin polymerization and an imbalance between the Rac1 and the RhoA GTPase activities were observed in Panx1-KO brain tissues. Our findings highlight a novel interaction between Panx1 channels, actin, and Rho GTPases, which appear to be relevant for synapse stability.


Assuntos
Actinas , Conexinas , Animais , Camundongos , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo
3.
AIMS Neurosci ; 9(3): 320-344, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329900

RESUMO

During prenatal life, exposure to synthetic glucocorticoids (SGCs) can alter normal foetal development, resulting in disease later in life. Previously, we have shown alterations in the dendritic cytoarchitecture of Purkinje cells in adolescent rat progeny prenatally exposed to glucocorticoids. However, the molecular mechanisms underlying these alterations remain unclear. A possible molecular candidate whose deregulation may underlie these changes is the glucocorticoid receptor (GR) and neurotrophin 3/ tropomyosin receptor kinase C, neurotrophic complex (NT-3/TrkC), which specifically modulates the development of the neuronal connections in the cerebellar vermis. To date, no evidence has shown that the cerebellar expression levels of this neurotrophic complex are affected by exposure to a synthetic glucocorticoid in utero. Therefore, the first objective of this investigation was to evaluate the expression of GR, NT-3 and TrkC in the cerebellar vermis using immunohistochemistry and western blot techniques by evaluating the progeny during the postnatal stage equivalent to adolescence (postnatal Day 52). Additionally, we evaluated anxiety-like behaviours in progeny using the elevated plus maze and the marble burying test. In addition, an environmental enrichment (EE) can increase the expression of some neurotrophins and has anxiolytic power. Therefore, we wanted to assess whether an EE reversed the long-term alterations induced by prenatal betamethasone exposure. The major findings of this study were as follows: i) prenatal betamethasone (BET) administration decreases GR, NT-3 and TrkC expression in the cerebellar vermis ii) prenatal BET administration decreases GR expression in the cerebellar hemispheres and iii) enhances the anxiety-like behaviours in the same progeny, and iv) exposure to an EE reverses the reduced expression of GR, NT-3 and TrkC in the cerebellar vermis and v) decreases anxiety-like behaviours. In conclusion, an enriched environment applied 18 days post-weaning was able to restabilize GR, NT-3 and TrkC expression levels and reverse anxious behaviours observed in adolescent rats prenatally exposed to betamethasone.

4.
Front Cell Neurosci ; 13: 372, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31481877

RESUMO

Schizophrenia (SZ) is associated with changes in the structure and function of several brain areas. Several findings suggest that these impairments are related to a dysfunction in γ-aminobutyric acid (GABA) neurotransmission in brain areas such as the medial prefrontal cortex (mPFC), the hippocampus (HPC) and the primary auditory cortex (A1); however, it is still unclear how the GABAergic system is disrupted in these brain areas. Here, we examined the effect of ketamine (Ket) administration during late adolescence in rats on inhibition in the mPFC-, ventral HPC (vHPC), and A1. We observe that Ket treatment reduced the expression of the calcium-binding protein parvalbumin (PV) and the GABA-producing enzyme glutamic acid decarboxylase 67 (GAD67) as well as decreased inhibitory synaptic efficacy in the mPFC. In addition, Ket-treated rats performed worse in executive tasks that depend on the integrity and proper functioning of the mPFC. Conversely, we do not find such changes in vHPC or A1. Together, our results provide strong experimental support for the hypothesis that during adolescence, the function of the mPFC is more susceptible than that of HPC or A1 to NMDAR hypofunction, showing apparent structure specificity. Thus, the impairment of inhibitory circuitry in mPFC could be a convergent primary site of SZ-like behavior during the adulthood.

5.
Physiol Behav ; 209: 112590, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252027

RESUMO

Preterm babies treated with synthetic glucocorticoids in utero exhibit behavioural alterations and disturbances in brain maturation during postnatal life. Accordingly, it has been shown in preclinical studies that SGC exposure at a clinical dose alters the presynaptic and postsynaptic structures and results in synaptic impairments. However, the precise mechanism by which SGC exposure impairs synaptic protein expression and its implications are not fully elucidated. Therefore, the purpose of this study was to investigate the effect of prenatal exposure to a clinical dose of betamethasone on the pre- and postsynaptic proteins expression in the developing rat cerebellum and prefrontal cortex, whose synchronized synaptic activity is crucial for motor control and learning. Consequently, the first objective of the present study was to determine whether prenatal betamethasone -equivalent to the clinically used dose- alters cerebellar vermal and cortical expression of synaptophysin, synaptotagmin I, post-synaptic density protein 95 and gephyrin - four important pre- and post-synaptic proteins, respectively- at a relevant adolescent stage. In addition, our second objective was to assess whether prenatal betamethasone administration induced coordination impairment using a rotarod test. On the other hand, it has been shown that the environmental enrichment is capable of improving synaptic transmission and recovering various behavioural impairments. Nevertheless, there is not enough information about the effect of this non-pharmacological preclinical approach on the regulation of this cerebellar and cortical synaptic proteins. Therefore, the third objective of this study was to examine whether environmental enrichment exposure could recover the possible molecular and behavioural impairments in the offspring at the same developmental stage. The principal data showed that adolescent rats prenatally treated with betamethasone exhibited underexpression of synaptophysin in the vermal cerebellum, but not change in levels of synaptotagmin I, post-synaptic density protein 95 and gephyrin. Analysis of the same pre- and post-synaptic proteins no showed differences in the frontal cortex of the same rats. These results were accompanied by an increase in the number of falls in the rotarod test, when the speed of rotation was fixed and when it was in acceleration, which means motor coordination impairments. Importantly, we found that environmental enrichment restores the betamethasone-induced reduction in the cerebellar synaptophysin together with a recover in the motor coordination impairments in prenatally betamethasone-exposed adolescent rats.


Assuntos
Ataxia/induzido quimicamente , Ataxia/terapia , Betametasona/toxicidade , Cerebelo/metabolismo , Meio Ambiente , Efeitos Tardios da Exposição Pré-Natal/psicologia , Sinaptofisina/biossíntese , Animais , Ataxia/psicologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Aprendizagem , Proteínas de Membrana/metabolismo , Córtex Pré-Frontal/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos , Sinaptotagmina I/metabolismo
6.
Rom J Morphol Embryol ; 58(1): 67-72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28523300

RESUMO

Several studies have indicated that abnormal prenatal changes in the circulating glucocorticoids (GCs), induced by either maternal stress or exogenous GC administration, significantly alter the development of Purkinje cells (PCs). Among the suggested mechanisms that could mediate this GC-dependent PC susceptibility are changes in the expression of type-1 metabotropic glutamate receptors (mGluR1). In the current study, we analyzed whether a single course of prenatally administered betamethasone phosphate (BET) in pregnant rats increased the immunohistochemical expression of mGluR1 in PCs and decreased PC dendritic growth. The data obtained showed that in utero BET exposure resulted in a significant immunohistochemical overexpression of mGluR1 and a significant reduction in Purkinje cell dendritic outgrowth during postnatal life.


Assuntos
Córtex Cerebelar/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Glucocorticoides/farmacologia , Células de Purkinje/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/biossíntese , Animais , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Dendritos/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Clin Pediatr Endocrinol ; 26(1): 9-15, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28203043

RESUMO

Previous animal studies have indicated that excessive prenatal circulating glucocorticoid (GC) levels induced by the antenatal administration of synthetic GC (sGC) significantly alter neuronal development in the cerebellar and hippocampal neurons of the offspring. However, it is unknown whether antenatal sGC administration results in long-term neocortical pyramidal cell impairment. In the current study, we examined whether an equivalent therapeutic dose of antenatal betamethasone phosphate (BET) in pregnant rats alters the Golgi-stained basilar dendritic length and histochemical expression of dendritic microtubule-associated protein 2 (MAP2) of neocortical pyramidal cells in infant, adolescent, and young adult offspring. The results obtained showed that in utero BET exposure resulted in a significant reduction in the basilar dendritic length per neuron and a transient reduction in histochemical MAP2 immunoreactivity. Consistent with previous hippocampal and cerebellar data, the present findings suggest that prenatal BET administration alters the dendritic growth of cerebrocortical pyramidal cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA