Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 210: 108645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663266

RESUMO

Silver nanoparticles (AgNPs) have an important role in agriculture since they have several applications that are essential for the enhanced yield of crops. Furthermore, they act as nano-pesticides, delivering a proper dose to the target plants without releasing unwanted pesticides into the environment. Upholding the sustainable nano agriculture, biocompatible silver nanoparticles were synthesised utilising Piper colubrinum Link. leaf extract. Different characterization methods (TEM, EDX and XRD) revealed that AgNPs were successfully formed and coated with phytochemicals that constituted the plant extract. Enhanced root development during the early post-germination phase is crucial for the success of direct seeding in rice cultivation. The effects of AgNPs on the growth of plant roots are poorly understood. In this work, Piper colubrinum mediated AgNPs-primed Oryza sativa L. seeds, at various concentrations (0, 50, 80, 100, and 150 mg/L), exceeded typical hydro-primed controls in terms of germination and seedling growth. Oryza sativa L. treated with AgNPs at a concentration of 80 mg/L enhanced root elongation. Additionally, exposure to AgNPs significantly enhanced the content of chlorophyll. The Kyoto Encyclopedia of Genes and Genomes (KEGG) study revealed that the identified pathways like Aromatic amino acid biosynthesis genes, Fatty acid biosynthesis genes, and Carotenoid biosynthesis genes were the most enriched. Some of the genes associated with root growth and development like glucosyltransferases, Glutathione pathway genes, Calcium-ion binding pathway genes, Peroxidase precursor and Nitrilase-associated protein were up regulated. Overall, AgNPs treatments promoted seed germination, growth, chlorophyll content and gene expression patterns, which might be attributable to the beneficial effects of AgNPs on rice.


Assuntos
Germinação , Nanopartículas Metálicas , Oryza , Raízes de Plantas , Prata , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Prata/farmacologia , Nanopartículas Metálicas/química , Germinação/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Transcriptoma/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos
2.
J Genet Eng Biotechnol ; 18(1): 24, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32617758

RESUMO

BACKGROUND: Pharmaceutically important curcuminoid synthesis in C. longa is controlled by CURS1, CURS2, and CURS3 genes. The present study detected the physicochemical properties and structural characteristics including the secondary and 3D structure of CURS proteins. The primary, secondary, and tertiary structure of the CURS proteins were modeled and characterized using multiple bioinformatics tools such as ExPasy ProtParam tools, self-optimized prediction method with alignment (SOPMA), PSIPRED, and SWISS-MODEL. The predicted secondary structure of curcumin synthase provided an α-helix and random coil as the major components. The reliability of the modeled structure was confirmed using PROCHECK and QMEAN programs. RESULTS: The molecular weight of CURS1 is 21093.19 Da, theoretical pI as 4.93, and an aliphatic index of 99.19. Molecular weight of CURS2 and CURS3 proteins are 20266.13 Da and 20629.52 Da, theoretical pI as 5.28 and 4.96, and an aliphatic index of 89.30 and 86.37, respectively. In the predicted secondary structure of CURS proteins, alpha helices and random coils of CURS1, CUR2, and CURS3 were 42.72, 41.38, and 44.74% and 24.87, 31.03, and 17.89, respectively. The extended strands were 16.24, 19.40, and 17.89. QMEAN Z-score is - 0.83, - 0.89, and - 1.09 for CURS1, CURS2, and CURS3, respectively. CONCLUSION: Prediction of the 3D model of a protein by in silico analysis is a highly challenging aspect to confirm the NMR or X-ray crystallographic data. This report can contribute to the understanding of the structure, physicochemical properties, structural motifs, and protein-protein interaction of CURS1, CUR2, and CURS3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA