RESUMO
Scleroderma is a chronic and progressive autoimmune disorder of connective tissues often causing lesions and deformities of the hands. Individuals affected by this condition experience daily life limitations and are typically unable to take part in sport activities that involve impacts on the hands. In this article we describe the design and manufacturing of custom-made hand orthoses to play sitting volleyball, for an elite paralympic athlete affected by scleroderma. The devices consist of a carbon fibre shell with an internal silicone padding and an external polymeric multilayer cover. The manufacturing of the orthoses involves digital modelling, 3D printing, composite lamination and an innovative method to create a strong and durable chemical bonding between silicone and carbon fibre. The internal silicone padding proved to be effective in hosting and protecting the hands, whereas the external shell with polymeric multilayer cover allowed to dampen the ball shocks while effectively hitting the ball. Indeed, these devices allowed the athlete to take part in the 2020 Tokyo Paralympic games and were used for two years without showing any damage.
Assuntos
Desenho de Equipamento , Mãos , Aparelhos Ortopédicos , Voleibol , Humanos , Atletas , Escleroderma Sistêmico , Impressão TridimensionalRESUMO
The aim of this work was to assess the accuracy, repeatability, and reproducibility of a hand-held, structured-light 3D scanner (EINScan Pro 2X Plus with High Definition Prime Pack, SHINING 3D Tech. Co., Ltd., Hangzhou, China), to support its potential use in multi-site settings on lower limb prosthetics. Four limb models with different shapes were fabricated and scanned with a metrological 3D scanner (EINScan Laser FreeScan 5X, SHINING 3D Tech. Co., Ltd., Hangzhou, China) by a professional operator (OP0). Limb models were then mailed to three sites where two operators (OP1, OP2) scanned them using their own structured-light 3D scanner (same model). OP1 scanned limb models twice (OP1-A, OP1-B). OP0, OP1-A, and OP2 scans were compared for accuracy, OP1-A and OP1-B for repeatability, and OP1-A and OP2 for reproducibility. Among all comparisons, the mean radial error was <0.25 mm, mean angular error was <4°, and root mean square error of the radial distance was <1 mm. Moreover, limits of agreement were <3.5% for perimeters and volumes. By comparing these results with respect to clinically-relevant thresholds and to the literature available on other 3D scanners, we conclude that the EINScan Pro 2X Plus 3D Scanner with High Definition Prime Pack has good accuracy, repeatability, and reproducibility, supporting its use in multi-site settings.
Assuntos
Mãos , Extremidade Superior , Reprodutibilidade dos Testes , Bandagens , Extremidade Inferior/diagnóstico por imagemRESUMO
A well-fitting socket and a fine-tuned foot alignment are crucial elements in a running-specific prosthesis to allow Paralympic athletes with below-knee amputation to express their full competitive potential. For this reason, once a satisfactory socket-foot configuration is established after dynamic alignment, it is fundamental to reproduce the same conditions when constructing the definitive carbon fiber socket, and when renewing or constructing a back-up prosthesis, without dismantling the original. In addition, to cope with emerging needs of the athlete, it would be beneficial to implement fine-tuning adjustments of the alignment in a very controlled manner. At present, this requires elaborate bench procedures, which tend to be expensive, time consuming, prone to manual errors, cumbersome in use and most often require damaging or disposing of the current socket. In this study, we propose an original CAD/CAM workflow that allows replicating the desired socket-foot configuration for below-knee sprinting prostheses, as well as performing socket adaptations and introducing fine-tuning adjustments to the alignments. The workflow is exemplified with reference to two case studies involving elite Paralympic runners with transtibial and partial foot amputations, respectively.
Assuntos
Amputados , Membros Artificiais , Corrida , Humanos , Marcha , Fenômenos Biomecânicos , Desenho de PróteseRESUMO
The design and fitting of prosthetic sockets can significantly affect the acceptance of an artificial limb by persons with lower limb amputations. Clinical fitting is typically an iterative process, which requires patients' feedback and professional assessment. When feedback is unreliable due to the patient's physical or psychological conditions, quantitative measures can support decision-making. Specifically, monitoring the skin temperature of the residual limb can provide valuable information regarding unwanted mechanical stresses and reduced vascularization, which can lead to inflammation, skin sores and ulcerations. Multiple 2D images to examine a real-life 3D limb can be cumbersome and might only offer a partial assessment of critical areas. To overcome these issues, we developed a workflow for integrating thermographic information on the 3D scan of a residual limb, with intrinsic reconstruction quality measures. Specifically, workflow allows us to calculate a 3D thermal map of the skin of the stump at rest and after walking, and summarize this information with a single 3D differential map. The workflow was tested on a person with transtibial amputation, with a reconstruction accuracy lower than 3 mm, which is adequate for socket adaptation. We expect the workflow to improve socket acceptance and patients' quality of life.