Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 199: 106150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35944614

RESUMO

Common strategies to improve recombinant protein production in Escherichia coli often involve the test and optimization of several different variables, when using traditional expression vectors that are commercially available. Now, modern synthetic biology-based strategies allow for extensive modifications of these traditional vectors, or even construction of entirely new modular vectors, so as to permit tunable production of the recombinant proteins of interest. Herein, we describe the engineering of a new expression operating unit (EOU; 938 bp) for producing recombinant proteins in E. coli, through the combinatorial assembly of standardized and well-characterized genetic elements required for transcription and translation (promoter, operator site, RBS, junction RBS-CDS, cloning module, transcriptional terminator). We also constructed a novel T7 promoter variant with increased transcriptional activity (1.7-fold higher), when compared to the canonical wild type T7 promoter sequence. This new EOU yielded an improved production of the reporter protein superfolder GFP (sfGFP) in E. coli BL21(DE3) (relative fluorescence units/RFU = 70.62 ± 1.62 A U.) when compared to a high-producing control expression vector (plasmid BBa_I746909; RFU = 59.68 ± 1.82 A U.). The yields of purified soluble recombinant sfGFP were also higher when using the new EOU (188 mg L-1 culture vs. 108 mg L-1 in the control) and it performed similarly well when inserted into different plasmid backbones (pOPT1.0/AmpR and pOPT2.0/CmR).


Assuntos
Escherichia coli , Vetores Genéticos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
2.
Exp Appl Acarol ; 86(3): 385-406, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35286553

RESUMO

Blomia tropicalis and Dermatophagoides pteronyssinus play an important role in triggering allergy. Glycycometus malaysiensis causes IgE reaction in sensitive people, but is rarely reported in domestic dust, because it is morphologically similar to B. tropicalis making the identification of these species difficult. The identification of mites is mostly based on morphology, a time-consuming and ambiguous approach. Herein, we describe a multiplex polymerase chain reaction (mPCR) assay based on ribosomal DNA capable to identify mixed cultures of B. tropicalis, D. pteronyssinus and G. malaysiensis, and/or to identify these species from environmental dust. For this, the internal transcribed spacer 2 (ITS2) regions, flanked by partial sequences of the 5.8S and 28S genes, were PCR-amplified, cloned and sequenced. The sequences obtained were aligned with co-specific sequences available in the GenBank database for primer design and phylogenetic studies. Three pairs of primers were chosen to compose the mPCR assay, which was used to verify the frequency of different mites in house dust samples (n = 20) from homes of Salvador, Brazil. Blomia tropicalis was the most frequent, found in 95% of the samples, followed by G. malaysiensis (70%) and D. pteronyssinus (60%). Besides reporting for the first time the occurrence of G. malaysiensis in Brazil, our results confirm the good resolution of the ITS2 region for mite identification. Furthermore, the mPCR assay proved to be a fast and reliable tool for identifying these mites in mixed cultures and could be applied in future epidemiological studies, and for quality control of mite extract production for general use.


Assuntos
Dermatophagoides pteronyssinus , Ácaros , Animais , Antígenos de Dermatophagoides , Brasil , Poeira , Humanos , Reação em Cadeia da Polimerase Multiplex , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA