Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 88(5): e202300028, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37134299

RESUMO

Cysteine-based perfluoroaromatic (hexafluorobenzene (HFB) and decafluorobiphenyl (DFBP)) were synthesized and established as a chemoselective and available core to construct molecular systems ranging from small molecules to biomolecules with interesting properties. The DFBP was found more effective than HFB for the monoalkylation of decorated thiol molecules. As proof of concept of the potential application of perfluorinated derivatives as non-cleavable linkers, some antibody-perfluorinated conjugates were prepared via thiol through two different strategies, i) using thiol from reduced cystamine coupling to carboxylic acids from mAb by amide bond, and ii) using thiols from reduction of mAb disulfide bond. Conjugates cell binding analysis demonstrated that the bioconjugation does not affect the macromolecular entity. Besides, some molecular properties of synthesized compounds are evaluated through spectroscopic characterization (FTIR and 19 F NMR chemical shifts) and theoretical calculations. The comparison of calculated and experimental 19 F NMR shifts and IR wavenumbers give excellent correlations, asserting as powerful tools in structurally identifying HFB and DFBP derivatives. Moreover, molecular docking was also developed to predict cysteine-based perfluorated derivatives' affinity against topoisomerase Il and cyclooxygenase 2 (COX-2). The results suggested that mainly cysteine-based DFBP derivatives could be potential topoisomerase II α and COX-2 binders, becoming potential anticancer agents and candidates for anti-inflammatory treatment.


Assuntos
Antineoplásicos , Cisteína , Cisteína/química , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2/metabolismo , Antineoplásicos/química , Compostos de Sulfidrila/química
2.
Pharmaceutics ; 14(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35213980

RESUMO

Nanomedicine plays an essential role in developing new therapies through novel drug delivery systems, diagnostic and imaging systems, vaccine development, antibacterial tools, and high-throughput screening. One of the most promising drug delivery systems are nanoparticles, which can be designed with various compositions, sizes, shapes, and surface modifications. These nanosystems have improved therapeutic profiles, increased bioavailability, and reduced the toxicity of the product they carry. However, the clinical translation of nanomedicines requires a thorough understanding of their properties to avoid problems with the most questioned aspect of nanosystems: safety. The particular physicochemical properties of nano-drugs lead to the need for additional safety, quality, and efficacy testing. Consequently, challenges arise during the physicochemical characterization, the production process, in vitro characterization, in vivo characterization, and the clinical stages of development of these biopharmaceuticals. The lack of a specific regulatory framework for nanoformulations has caused significant gaps in the requirements needed to be successful during their approval, especially with tests that demonstrate their safety and efficacy. Researchers face many difficulties in establishing evidence to extrapolate results from one level of development to another, for example, from an in vitro demonstration phase to an in vivo demonstration phase. Additional guidance is required to cover the particularities of this type of product, as some challenges in the regulatory framework do not allow for an accurate assessment of NPs with sufficient evidence of clinical success. This work aims to identify current regulatory issues during the implementation of nanoparticle assays and describe the major challenges that researchers have faced when exposing a new formulation. We further reflect on the current regulatory standards required for the approval of these biopharmaceuticals and the requirements demanded by the regulatory agencies. Our work will provide helpful information to improve the success of nanomedicines by compiling the challenges described in the literature that support the development of this novel encapsulation system. We propose a step-by-step approach through the different stages of the development of nanoformulations, from their design to the clinical stage, exemplifying the different challenges and the measures taken by the regulatory agencies to respond to these challenges.

3.
Pharmaceutics ; 13(10)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34683824

RESUMO

Interferons (IFNs) are cytokines involved in the immune response that act on innate and adaptive immunity. These proteins are natural cell-signaling glycoproteins expressed in response to viral infections, tumors, and biological inducers and constitute the first line of defense of vertebrates against infectious agents. They have been marketed for more than 30 years with considerable impact on the global therapeutic protein market thanks to their diversity in terms of biological activities. They have been used as single agents or with combination treatment regimens, demonstrating promising clinical results, resulting in 22 different formulations approved by regulatory agencies. The 163 clinical trials with currently active IFNs reinforce their importance as therapeutics for human health. However, their application has presented difficulties due to the molecules' size, sensitivity to degradation, and rapid elimination from the bloodstream. For some years now, work has been underway to obtain new drug delivery systems to provide adequate therapeutic concentrations for these cytokines, decrease their toxicity and prolong their half-life in the circulation. Although different research groups have presented various formulations that encapsulate IFNs, to date, there is no formulation approved for use in humans. The current review exhibits an updated summary of all encapsulation forms presented in the scientific literature for IFN-α, IFN-ß, and IFN-γ, from the year 1996 to the year 2021, considering parameters such as: encapsulating matrix, route of administration, target, advantages, and disadvantages of each formulation.

4.
Int J Mol Sci ; 22(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498184

RESUMO

The synthesis and assembly of nanoparticles using green technology has been an excellent option in nanotechnology because they are easy to implement, cost-efficient, eco-friendly, risk-free, and amenable to scaling up. They also do not require sophisticated equipment nor well-trained professionals. Bionanotechnology involves various biological systems as suitable nanofactories, including biomolecules, bacteria, fungi, yeasts, and plants. Biologically inspired nanomaterial fabrication approaches have shown great potential to interconnect microbial or plant extract biotechnology and nanotechnology. The present article extensively reviews the eco-friendly production of metalloid nanoparticles, namely made of selenium (SeNPs) and tellurium (TeNPs), using various microorganisms, such as bacteria and fungi, and plants' extracts. It also discusses the methodologies followed by materials scientists and highlights the impact of the experimental sets on the outcomes and shed light on the underlying mechanisms. Moreover, it features the unique properties displayed by these biogenic nanoparticles for a large range of emerging applications in medicine, agriculture, bioengineering, and bioremediation.


Assuntos
Química Verde/métodos , Microbiologia Industrial/métodos , Nanopartículas Metálicas/química , Nanomedicina/métodos , Selênio/química , Telúrio/química , Animais , Humanos , Nanopartículas Metálicas/uso terapêutico
5.
Molecules ; 25(20)2020 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33050601

RESUMO

The coronavirus infectious disease (COVID-19) pandemic emerged at the end of 2019, and was caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which has resulted in an unprecedented health and economic crisis worldwide. One key aspect, compared to other recent pandemics, is the level of urgency, which has started a race for finding adequate answers. Solutions for efficient prevention approaches, rapid, reliable, and high throughput diagnostics, monitoring, and safe therapies are needed. Research across the world has been directed to fight against COVID-19. Biomedical science has been presented as a possible area for combating the SARS-CoV-2 virus due to the unique challenges raised by the pandemic, as reported by epidemiologists, immunologists, and medical doctors, including COVID-19's survival, symptoms, protein surface composition, and infection mechanisms. While the current knowledge about the SARS-CoV-2 virus is still limited, various (old and new) biomedical approaches have been developed and tested. Here, we review the current status and future perspectives of biomedical science in the context of COVID-19, including nanotechnology, prevention through vaccine engineering, diagnostic, monitoring, and therapy. This review is aimed at discussing the current impact of biomedical science in healthcare for the management of COVID-19, as well as some challenges to be addressed.


Assuntos
Betacoronavirus/isolamento & purificação , Pesquisa Biomédica/normas , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Betacoronavirus/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Gerenciamento Clínico , Humanos , Pneumonia Viral/diagnóstico , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2
6.
Ther Innov Regul Sci ; 52(6): 701-707, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29714581

RESUMO

In the last few decades, genomic manipulation has made significant progress as a result of the development of recombinant DNA technologies; however, more often than not, these techniques have been costly and labor intensive. In contrast, recently developed next-generation sequencing (NGS) technologies have provided a cheaper, faster, and easier process to study genomics. In particular, an NGS technique emerged from bacterial CRISPR-associated protein-9 nuclease (Cas9) as a revolutionary method to modify, regulate, or mark specific genomic sequences on virtually any organism. A later adaptation of this bacterial defense mechanism that successfully and permanently edits dysfunctional genes and corrects missing proteins has resulted in a new era for disease genetic engineering. Clinical trials using this technique are already being performed, and the applicability of CRISPR-Cas9 techniques is actively being investigated using in vivo studies. However, the concept of genome correction poses great concerns from a regulatory perspective, especially in terms of security, so principles for the regulation of these methodologies are being established. We delved into CRISPR-Cas9 from its natural and ortholog origins to its engineered variants and behaviors to present its notable and diverse applications in the fields of biotechnology and human therapeutics.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Engenharia Genética/legislação & jurisprudência , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto/legislação & jurisprudência , Engenharia Genética/métodos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Análise de Sequência de DNA
7.
Ther Innov Regul Sci ; 51(3): 307-313, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-30231695

RESUMO

Ecuador is undergoing a process of clinical research development and strengthening. At the turn of the century, Ecuador experienced a favorable transition period of economic stability, which enabled advances in the health system and improvements in population welfare indicators. During this period, Ecuador created an institutional infrastructure to support the implementation and development of research projects. In turn, Ecuador created institutions, including the National Agency for Health Regulation, Control, and Surveillance (Agencia Nacional de Regulación, Control y Vigilancia Sanitaria [ARCSA]), and regulations establishing clinical trial (CT) design, conduct, recording, and reporting parameters, whose compliance ensures the protection of the rights of research subjects and requires compliance with Good Clinical Practice (GCP). Ecuador has favorable conditions for fostering the development of clinical research. The regulation of CTs is a process undergoing consistent changes toward harmonization with international standards and quality assurance.

8.
Int J Med Microbiol ; 301(1): 16-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20708963

RESUMO

Neisseria meningitidis causes meningitis and septicemia. There is no single vaccine against all serogroup B meningococcal (MenB) strains up to now. Their capsular polysaccharide (MenB CPS) bears epitopes both cross-reacting and non-cross-reactive with human polysialic acid. A bactericidal and protective antibody mAb (13D9) recognizing a unique epitope in MenB CPS was used to screen a phage-displayed peptide library. Four peptides, able to bind mAb 13D9 in competition with MenB CPS, were identified. Immunization of mice with the phage-displayed peptides elicited anti-peptide IgG antibodies, mainly IgG(2a) for 3 of the peptides and bactericidal and protective antibody levels for one of them. Peptides specifically targeting the immune response toward epitopes found only in MenB CPS could be considered for a universal vaccine against serogroup B meningococcal strains.


Assuntos
Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Peptídeos/imunologia , Polissacarídeos Bacterianos/imunologia , Animais , Anticorpos Antibacterianos/sangue , Feminino , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Biblioteca de Peptídeos , Ratos , Ensaios de Anticorpos Bactericidas Séricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA