RESUMO
BACKGROUND: Patient-ventilator asynchrony is common in patients undergoing mechanical ventilation. The proportion of health-care professionals capable of identifying and effectively managing different types of patient-ventilator asynchronies is limited. A few studies have developed specific training programs, but they mainly focused on improving patient-ventilator asynchrony detection without assessing the ability of health-care professionals to determine the possible causes. METHODS: We conducted a 36-h training program focused on patient-ventilator asynchrony detection and management for health-care professionals from 20 hospitals in Latin America and Spain. The training program included 6 h of a live online lesson during which 120 patient-ventilator asynchrony cases were presented. After the 6-h training lesson, health-care professionals were required to complete a 1-h training session per day for the subsequent 30 d. A 30-question assessment tool was developed and used to assess health-care professionals before training, immediately after the 6-h training lecture, and after the 30 d of training (1-month follow-up). RESULTS: One hundred sixteen health-care professionals participated in the study. The median (interquartile range) of the total number of correct answers in the pre-training, post-training, and 1-month follow-up were significantly different (12 [8.75-15], 18 [13.75-22], and 18.5 [14-23], respectively). The percentages of correct answers also differed significantly between the time assessments. Study participants significantly improved their performance between pre-training and post-training (P < .001). This performance was maintained after a 1-month follow-up (P = .95) for the questions related to the detection, determination of cause, and management of patient-ventilator asynchrony. CONCLUSIONS: A specific 36-h training program significantly improved the ability of health-care professionals to detect patient-ventilator asynchrony, determine the possible causes of patient-ventilator asynchrony, and properly manage different types of patient-ventilator asynchrony.