Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Sci Total Environ ; 927: 171301, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423320

RESUMO

The occurrence of harmful algal blooms (HABs) in freshwater environments has been expanded worldwide with growing frequency and severity. HABs can pose a threat to public water supplies, raising concerns about safety of treated water. Many studies have provided valuable information about the impacts of HABs and management strategies on the early-stage treatment processes (e.g., pre-oxidation and coagulation/flocculation) in conventional drinking water treatment plants (DWTPs). However, the potential effect of HAB-impacted water in the granular media filtration has not been well studied. Biologically-active filters (BAFs), which are used in drinking water treatment and rely largely on bacterial community interactions, have not been examined during HABs in full-scale DWTPs. In this study, we assessed the bacterial community structure of BAFs, functional profiles, assembly processes, and bio-interactions in the community during both severe and mild HABs. Our findings indicate that bacterial diversity in BAFs significantly decreases during severe HABs due to the predominance of bloom-associated bacteria (e.g., Spingopyxis, Porphyrobacter, and Sphingomonas). The excitation-emission matrix combined with parallel factor analysis (EEM-PARAFAC) confirmed that filter influent affected by the severe HAB contained a higher portion of protein-like substances than filter influent samples during a mild bloom. In addition, BAF community functions showed increases in metabolisms associated with intracellular algal organic matter (AOM), such as lipids and amino acids, during severe HABs. Further ecological process and network analyses revealed that severe HAB, accompanied by the abundance of bloom-associated taxa and increased nutrient availability, led to not only strong stochastic processes in the assembly process, but also a bacterial community with lower complexity in BAFs. Overall, this study provides deeper insights into BAF bacterial community structure, function, and assembly in response to HABs.


Assuntos
Água Potável , Filtração , Proliferação Nociva de Algas , Purificação da Água , Purificação da Água/métodos , Água Potável/microbiologia , Bactérias , Microbiota , Microbiologia da Água
2.
Microbiol Spectr ; 9(2): e0081721, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34668732

RESUMO

The use of enterococci as a fecal indicator bacterial group for public health risk assessment has been brought into question by recent studies showing that "naturalized" populations of Enterococcus faecalis exist in the extraenteric environment. The extent to which these naturalized E. faecalis organisms can confound water quality monitoring is unclear. To determine if strains isolated from different habitats display different survival strategies and responses, we compared the decay patterns of three E. faecalis isolates from the natural environment (environmental strains) against three human gut isolates (enteric strains) in laboratory mesocosms that simulate an oligotrophic, aerobic freshwater environment. Our results showed similar overall decay rates between enteric and environmental isolates based on viable plate and quantitative PCR (qPCR) counts. However, the enteric isolates exhibited a spike in copy number ratios of 16S rRNA gene transcripts to 16S rRNA gene DNA copies (rRNA:rDNA ratios) between days 1 and 3 of the mesocosm incubations that was not observed in environmental isolates, which could indicate a different stress response. Nevertheless, there was no strong evidence of differential gene expression between environmental and enteric isolates related to habitat adaptation in the accompanying mesocosm metatranscriptomes. Overall, our results provide novel information on how rRNA levels may vary over different growth conditions (e.g., standard lab versus oligotrophic) for this important indicator bacteria. We also observed some evidence for habitat adaptation in E. faecalis; however, this adaptation may not be substantial or consistent enough for integration in water quality monitoring. IMPORTANCE Enterococci are commonly used worldwide to monitor environmental fecal contamination and public health risk for waterborne diseases. However, closely related enterococci strains adapted to living in the extraenteric environment may represent a lower public health risk and confound water quality estimates. We developed an rRNA:rDNA viability assay for E. faecalis (a predominant species within this fecal group) and tested it against both enteric and environmental isolates in freshwater mesocosms to assess whether this approach can serve as a more sensitive water quality monitoring tool. We were unable to reliably distinguish the different isolate types using this assay under the conditions tested; thus, environmental strains should continue to be counted during routine water monitoring. However, this assay could be useful for distinguishing more recent (i.e., higher-risk) fecal pollution because rRNA levels significantly decreased after 1 week in all isolates.


Assuntos
Adaptação Fisiológica/fisiologia , DNA Ribossômico/genética , Enterococcus faecalis/genética , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Biologia Computacional/métodos , Enterococcus faecalis/isolamento & purificação , Monitoramento Ambiental , Fezes/microbiologia , Água Doce/microbiologia , Dosagem de Genes/genética , Humanos , Intestinos/microbiologia , Transcriptoma/genética , Microbiologia da Água , Qualidade da Água
3.
Ecotoxicology ; 30(3): 411-420, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33675450

RESUMO

Calanoid copepods are integral to aquatic food webs and may drive the bioaccumulation of toxins and heavy metals, spread of infectious diseases, and occurrence of toxic cyanobacterial harmful algal blooms (HABs) in freshwater aquatic systems. However, interrelationships between copepod and cyanobacterial population dynamics and ecophysiology remain unclear. Insights into these relationships are important to aquatic resource management, as they may help guide mitigation efforts. We developed a calanoid copepod qPCR assay to investigate how copepod abundance and physiological status relate to the abundance of cyanobacteria and the concentration of total microcystin in a HAB-prone freshwater multi-use eutrophic lake. Through in silico and in vitro validation of primers and analyses of time series, we demonstrate that our assay can be used as a reliable tool for environmental monitoring. Importantly, copepod RNA:DNA ratios on and shortly after the day when microcystin concentration was at its highest within the lake were not significantly lower (or higher) than before or after this period, suggesting that copepods may have been tolerant of microcystin levels observed and capable of perpetuating bloom events by consuming competitors of toxic cyanobacteria.


Assuntos
Copépodes , Cianobactérias , Animais , Copépodes/genética , Cianobactérias/genética , DNA , Monitoramento Ambiental , Proliferação Nociva de Algas , Lagos , Microcistinas , RNA Ribossômico
4.
Sci Total Environ ; 751: 141409, 2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32882545

RESUMO

To address the adverse effects of harmful algal blooms, there are increased demands over the implementation of ozone coupled with biologically active carbon (BAC) filters in the drinking water treatment plants. Although the microbial biofilms are vital elements to support the proper performance of BAC filters, except for taxonomic affiliations, little is known about the assembly mechanisms of microbial communities in the full-scale BAC filters. This study aimed to examine how the assembly processes and their associated factors (e.g., influent characteristics, biological interactions) drive the temporal dynamics of bacterial communities in full-scale BAC filters, which underwent ozone implementation (five consecutive seasons from 2017 to 2018). The results revealed that along with the increase of bacterial taxonomic richness and evenness, stochastic processes became more crucial to determine the bacterial community assembly in the summer and autumn after ozone implementation (relative contribution: 61.23% and 83.75%, respectively). Moreover, their corresponding networks possessed simple network structures with lower modularity than other seasons, which implied lesser biological interactions among bacterial populations. The correlation between taxonomic and predicted functional diversities using functional redundancy index indicated that relatively high levels of bacterial functional redundancy (>0.83) were generally present in BAC filters. However, compared to other seasons, significantly higher degrees of functional redundancy existed in the summer and autumn after ozone implementation (0.85 ± 0.01 and 0.86 ± 0.01, respectively). Overall, this work improves our understanding of the microbial ecology of full-scale BAC filters by providing a conceptual framework that characterizes bacterial biofilm assembly processes relevant to performance optimization of full-scale BAC filters.


Assuntos
Ozônio , Purificação da Água , Bactérias , Biofilmes , Carvão Vegetal
5.
Water Res ; 184: 116120, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32726741

RESUMO

The occurrence of harmful algal blooms dominated by toxic cyanobacteria has induced continuous loadings of algal organic matter (AOM) and toxins in drinking water treatment plants. However, the impact of AOM on the active biofilms and microbial community structures of biologically-active filtration (BAF), which directly affects the contaminant removal, is not well understood. In this study, we systematically examined the effects of AOM on BAF performance and bacterial biofilm formation over 240 days, tracing the removal of specific AOM components, a cyanotoxin [microcystin-LR (MC-LR)], and microbial community responses. The component analysis (excitation and emission matrix analysis) results for AOM revealed that terrestrial humic-like substances showed the highest removal among all the identified components and were strongly correlated to MC-LR removal. In addition, reduced empty bed contact time and deactivation of biofilms significantly decreased BAF performances for both AOM and MC-LR. The active biofilm, bacterial community structure, and mlrA gene (involved in microcystin degradation) abundance demonstrated that bacterial biofilm composition responded to AOM and MC-LR, in which Rhodocyclaceae, Saprospiraceae, and Comamonadaceae were dominant. In addition, MC-LR biodegradation appeared to be more active at the top than at the bottom layer in BAF. Overall, this study provides deeper insights into the role of biofilms and filter operation on the fate of AOM and MC-LR in BAF.


Assuntos
Cianobactérias , Purificação da Água , Biofilmes , Filtração , Proliferação Nociva de Algas , Microcistinas
6.
Chemosphere ; 246: 125745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31927366

RESUMO

There are increased concerns over the contributions of biofilms to disinfection byproduct (DBP) formation in engineered water systems (EWS). However, monitoring the biomolecular characteristics of biofilms to understand their impacts on DBP formation has been a great challenge as it requires complex analytical techniques. This study aimed to examine the applicability of fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) to assess the chemical compositions and DBP formation of biofilms. Biofilms were collected from reactors grown on R2A media, as well as two drinking water-related organic substrates such as humic substances and algal organic matter. The chemical composition and formation of carbonaceous and nitrogenous DBPs of biofilms were continuously monitored every 21 days for 168 days and correlated with the derived EEM-PARAFAC components. Results indicated that all biofilm samples comprised mostly of protein-like components (∼90%), and to a lesser extent, humic-like components (∼10%). Strong correlations were generally found between tryptophan-like substances and the studied DBP formation (R2min ≥ 0.76, P < 0.05), indicating that they play a major role in producing biofilm-derived DBPs upon chlorination. Moreover, significant discrepancies between the chemical compositions and DBP formation of biofilms and their corresponding feed solutions were observed, likely due to biotransformation and biosorption processes. Overall, this work highlights that EEM-PARAFAC analysis is a promising tool to monitor the biomolecular characteristics of biofilm components and to predict the subsequent DBP formation in optimizing disinfection protocols for EWS.


Assuntos
Desinfetantes/análise , Poluentes Químicos da Água/análise , Biofilmes , Desinfecção/métodos , Água Potável/química , Análise Fatorial , Fluorescência , Halogenação , Substâncias Húmicas/análise , Nitrogênio/análise , Espectrometria de Fluorescência/métodos , Purificação da Água/métodos
7.
Front Microbiol ; 10: 2258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649627

RESUMO

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

8.
Water Res ; 158: 136-145, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026675

RESUMO

Increased loading of algal organic matter (AOM) during harmful algal blooms not only burdens water treatment processes but also challenges safe drinking water delivery. While organic constituents promote biofilm growth in drinking water distribution systems (DWDS), the effects of AOM on biofilm formation in DWDS are not well understood. Herein, three parallel biofilm reactors were used to assess and compare how treated AOM- and humic substance (HS)-impacted bulk water, and R2A medium (a control) affect biofilm development for 168 days. The 16S rRNA gene sequencing analysis revealed that the bacterial communities in biofilms were clustered with the organic matter types in bulk water, where Family Comamonadaceae was the most dominant but showed different temporal dynamics depending on the organic matter characteristics in bulk water. Higher diversity was observed in the biofilms grown in AOM-impacted bulk water (BFAOM) than biofilms grown in HS-impacted (BFHS) and R2A-impacted bulk water (BFR2A) as the biofilms matured. In addition, some taxa (e.g., Rhodobacteraceae and Sphingomonadaceae) were enriched in BFAOM compared to BFHS and BFR2A. The biofilm image analysis results indicated that compared to BFHS, BFAOM and BFR2A had relatively thinner and heterogeneous physical structures with lower amounts of cell biomass, extracellular polymeric substances (EPS), and higher EPS protein/polysaccharide ratios. Overall, this study revealed how AOM- and HS-impacted bulk water shape the physiochemical and community structures of biofilms, which can provide insights into assessing biofilm-associated risks and optimizing disinfection practices for biofilm control in DWDS.


Assuntos
Água Potável , Substâncias Húmicas , Biofilmes , Desinfecção , RNA Ribossômico 16S
9.
J Water Health ; 16(5): 711-723, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30285953

RESUMO

Intestinal enterococci indicate the fecal contamination of bathing waters. This study defines the performance characteristics of the reference method ISO 7899-2:2000 with water samples collected from inland and coastal bathing areas in Finland. From a total of 341 bacterial isolates grown on Slanetz and Bartley medium, 63.6% were confirmed as intestinal enterococci on bile aesculin agar. The partial 16S rRNA gene sequences showed that Enterococcus faecium and Enterococcus faecalis clades accounted for 93.1% of the confirmed isolates. The range of the false positive and false negative rate of the ISO 7899-2 was 0.0-18.5% and 5.6-57.1%, respectively, being affected by the presumptive colony count on the membrane. The analysis of multiple sample volumes is proposed to reach 10-100 colonies per membrane when 47 mm diameter membranes are used to prevent overestimation of low counts and underestimation of the high counts.


Assuntos
Enterococcus , Monitoramento Ambiental/métodos , Microbiologia da Água/normas , Enterococcus faecium , Finlândia , RNA Ribossômico 16S , Qualidade da Água/normas
10.
J Hazard Mater ; 352: 111-120, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29602070

RESUMO

Treatability experiments were conducted to determine the biodegradation of diluted bitumen (dilbit) at 5 and 25 °C for 72 and 60 days, respectively. Microbial consortia obtained from the Kalamazoo River Enbridge Energy spill site were enriched on dilbit at both 5 (cryo) and 25 (meso) ºC. On every sampling day, triplicates were sacrificed and residual hydrocarbon concentrations (alkanes and polycyclic aromatic hydrocarbons) were determined by GCMS/MS. The composition and relative abundance of different bacterial groups were identified by 16S rRNA gene sequencing analysis. While some physicochemical differences were observed between the two dilbits, their biodegradation profiles were similar. The rates and extent of degradation were greater at 25 °C. Both consortia metabolized 99.9% of alkanes; however, the meso consortium was more effective at removing aromatics than the cryo consortium (97.5 vs 70%). Known hydrocarbon-degrading bacteria were present in both consortia (Pseudomonas, Rhodococcus, Hydrogenophaga, Parvibaculum, Arthrobacter, Acidovorax), although their relative abundances depended on the temperatures at which they were enriched. Regardless of the dilbit type, the microbial community structure significantly changed as a response to the diminishing hydrocarbon load. Our results demonstrate that dilbit can be effectively degraded by autochthonous microbial consortia from sites with recent exposure to dilbit contamination.


Assuntos
Hidrocarbonetos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Água Doce , Locais de Resíduos Perigosos , Michigan , Consórcios Microbianos , RNA Ribossômico 16S/genética , Temperatura
11.
Water Res ; 127: 230-238, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29055828

RESUMO

This study assessed the conductivity of a Geobacter-enriched biofilm anode in a microbial electrochemical cell (MxC) equipped with two gold anodes (25 mM acetate medium), as different proton gradients were built throughout the biofilm. There was no pH gradient across the biofilm anode at 100 mM phosphate buffer (current density 2.38 A/m2) and biofilm conductivity (Kbio) was as high as 0.87 mS/cm. In comparison, an inner biofilm became acidic at 2.5 mM phosphate buffer in which dead cells were accumulated at ∼80 µm of the inner biofilm anode. At this low phosphate buffer, Kbio significantly decreased by 0.27 mS/cm, together with declined current density of 0.64 A/m2. This work demonstrates that biofilm conductivity depends on the composition of live and dead cells in the conductive biofilm anode.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Eletrodos , Soluções Tampão , Condutividade Elétrica , Geobacter/química , Ouro , Concentração de Íons de Hidrogênio , Microscopia Confocal , Fosfatos/química , Prótons
12.
Appl Environ Microbiol ; 83(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28283527

RESUMO

To better understand the impacts of Corexit 9500 on the structure and activity levels of hydrocarbon-degrading microbial communities, we analyzed next-generation 16S rRNA gene sequencing libraries of hydrocarbon enrichments grown at 5 and 25°C using both DNA and RNA extracts as the sequencing templates. Oil biodegradation patterns in both 5 and 25°C enrichments were consistent with those reported in the literature (i.e., aliphatics were degraded faster than aromatics). Slight increases in biodegradation were observed in the presence of Corexit at both temperatures. Differences in community structure were observed between treatment conditions in the DNA-based libraries. The 25°C consortia were dominated by Vibrio, Idiomarina, Marinobacter, Alcanivorax, and Thalassospira species, while the 5°C consortia were dominated by several species of the genera Flavobacterium, Alcanivorax, and Oleispira Most of these genera have been linked to hydrocarbon degradation and have been observed after oil spills. Colwellia and Cycloclasticus, known aromatic degraders, were also found in these enrichments. The addition of Corexit did not have an effect on the active bacterial community structure of the 5°C consortia, while at 25°C, a decrease in the relative abundance of Marinobacter was observed. At 25°C, Thalassospira, Marinobacter, and Idiomarina were present at higher relative abundances in the RNA than DNA libraries, suggesting that they were active in degradation. Similarly, Oleispira was greatly stimulated by the addition of oil at 5°C.IMPORTANCE While dispersants such as Corexit 9500 can be used to treat oil spills, there is still debate on the effectiveness on enhancing oil biodegradation and its potential toxic effect on oil-degrading microbial communities. The results of this study provide some insights on the microbial dynamics of hydrocarbon-degrading bacterial populations in the presence of Corexit 9500. Operational taxonomic unit (OTU) analyses indicated that several OTUs were inhibited by the addition of Corexit. Conversely, a number of OTUs were stimulated by the addition of the dispersant, many of which were identified as known hydrocarbon-degrading bacteria. The results highlight the value of using RNA-based methods to further understand the impact of dispersant on the overall activity of different hydrocarbon-degrading bacterial groups.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Lipídeos/farmacologia , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Poluição por Petróleo/análise , Filogenia
13.
AIMS Environ Sci ; 4(3): 443-455, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32802939

RESUMO

Mitochondrial signature sequences have frequently been used to study human population diversity around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individuals that participated in these types of surveys. Here, we used environmental DNA extracts to determine the presence and sequence variability of human mitochondrial sequences as a means to study the diversity of populations inhabiting in areas nearby a tropical watershed impacted with human fecal pollution. We used high-throughput sequencing (Illumina) and barcoding to obtain thousands of sequences from the mitochondrial hypervariable region 2 (HVR2) and determined the different haplotypes present in 10 different water samples. Sequence analyses indicated a total of 19 distinct variants with frequency greater than 5%. The HVR2 sequences were associated with haplogroups of West Eurasian (57.6%), Sub-Saharan African (23.9%), and American Indian (11%) ancestry. This was in relative accordance with population census data from the watershed sites. The results from this study demonstrates the potential value of mitochondrial sequence data retrieved from fecally impacted environmental waters to study the population diversity of local municipalities. This environmental DNA approach may also have other public health implications such as tracking background levels of human mitochondrial genes associated with diseases. It may be possible to expand this approach to other animal species inhabiting or using natural water systems.

14.
Environ Sci Technol ; 50(23): 12799-12807, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27797183

RESUMO

We experimentally assessed the kinetics and thermodynamics of electron transfer (ET) from the donor substrate (acetate) to the anode for a mixed-culture biofilm anode. We interpreted the results with a modified biofilm-conduction model consisting of three ET steps in series: (1) intracellular ET, (2) non-Ohmic extracellular ET (EET) from an outer membrane protein to an extracellular cofactor (EC), and (3) ET from the EC to the anode by Ohmic-conduction in the biofilm matrix. The steady-state current density was 0.82 ± 0.03 A/m2 in a miniature microbial electrochemical cell operated at fixed anode potential of -0.15 V versus the standard hydrogen electrode. Illumina 16S-rDNA and -rRNA sequences showed that the Geobacter genus was less than 30% of the community of the biofilm anode. Biofilm conductivity was high at 2.44 ± 0.42 mS/cm, indicating that the maximum current density could be as high as 270 A/m2 if only Ohmic-conduction EET was limiting. Due to the high biofilm conductivity, the maximum energy loss for Ohmic-conduction EET was negligible, 0.085 mV. The energy loss in the second ET step also was small, only 20 mV, and the potential for the EC involved in the second ET was -0.15 V, a value documenting that >99% of the EC was in the oxidized state. Monod kinetics for utilization of acetate were relatively slow, and at least 87% of the energy loss was in the intracellular step. Thus, intracellular ET was the main kinetic and thermodynamic bottleneck to ET from donor substrate to the anode for a highly conductive biofilm.


Assuntos
Biofilmes , Eletrodos , Fontes de Energia Bioelétrica , Geobacter , Cinética
15.
Appl Environ Microbiol ; 82(9): 2872-2883, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26969701

RESUMO

Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter.The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to ß-lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Infecção Hospitalar/genética , Infecção Hospitalar/microbiologia , Hospitais , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Cloro , Técnicas de Cultura , DNA Bacteriano/análise , Desinfetantes/farmacologia , Desinfecção , Farmacorresistência Bacteriana , Genoma Bacteriano , Metagenoma , Microbiota/genética , Mycobacterium/fisiologia , Ohio , Filogenia , Proteobactérias/fisiologia , RNA Ribossômico 16S/genética , Sphingomonadaceae/fisiologia , Abastecimento de Água
16.
Chemosphere ; 147: 361-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774300

RESUMO

The effect of Cr(III) and Cr(VI) on nitrification was examined with samples from nitrifying enrichment cultures using three different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification, and by analysis of 16S rRNA sequences to determine changes in structure and activity of the microbial communities. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to Cr(III) (10-300 mg/L) and Cr(VI) (1-30 mg/L) for a period of 12 h. There was considerable decrease in SOUR with increasing dosages for both Cr(III) and Cr(VI), however Cr(VI) was more inhibitory than Cr(III). Based on the RT-qPCR data, there was reduction in the transcript levels of amoA and hao for increasing Cr(III) dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. For Cr(VI) exposure, there was comparatively little reduction in amoA expression while hao expression decreased for 1-3 mg/L Cr(VI) and increased at 30 mg/L Cr(VI). While Nitrosomonas spp. were the dominant bacteria in the bioreactor, based on 16S rRNA sequencing, there was a considerable reduction in Nitrosomonas activity upon exposure to 300 mg/L Cr(III). In contrast, a relatively small reduction in activity was observed at 30 mg/L Cr(VI) loading. Our data that suggest that both Cr(III) and Cr(VI) were inhibitory to nitrification at concentrations near the high end of industrial effluent concentrations.


Assuntos
Bactérias/metabolismo , Cromo/metabolismo , Nitrificação/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Amônia/metabolismo , Reatores Biológicos/microbiologia , DNA Bacteriano/metabolismo , Expressão Gênica , Oxirredução , Oxigênio/metabolismo , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Águas Residuárias
17.
Environ Sci Pollut Res Int ; 23(7): 6443-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26627696

RESUMO

Autotrophic nitrification in biological nitrogen removal systems has been shown to be sensitive to the presence of heavy metals in wastewater treatment plants. Using transcriptase-quantitative polymerase chain reaction (RT-qPCR) data, we examined the effect of copper on the relative expression of functional genes (i.e., amoA, hao, nirK, and norB) involved in redox nitrogen transformation in batch enrichment cultures obtained from a nitrifying bioreactor operated as a continuous reactor (24-h hydraulic retention time). 16S ribosomal RNA (rRNA) gene next-generation sequencing showed that Nitrosomonas-like populations represented 60-70% of the bacterial community, while other nitrifiers represented <5%. We observed a strong correspondence between the relative expression of amoA and hao and ammonia removal in the bioreactor. There were no considerable changes in the transcript levels of amoA, hao, nirK, and norB for nitrifying samples exposed to copper dosages ranging from 0.01 to 10 mg/L for a period of 12 h. Similar results were obtained when ammonia oxidation activity was measured via specific oxygen uptake rate (sOUR). The lack of nitrification inhibition by copper at doses lower than 10 mg/L may be attributed to the role of copper as cofactor for ammonia monooxygenase or to the sub-inhibitory concentrations of copper used in this study. Overall, these results demonstrate the use of molecular methods combined with conventional respirometry assays to better understand the response of wastewater nitrifying systems to the presence of copper.


Assuntos
Nitrificação , Nitrosomonas/metabolismo , Águas Residuárias/química , Amônia/análise , Amônia/metabolismo , Reatores Biológicos/microbiologia , Cobre/farmacologia , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Nitrosomonas/efeitos dos fármacos , Nitrosomonas/genética , Oxirredução , Consumo de Oxigênio , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Águas Residuárias/microbiologia , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Purificação da Água
18.
PeerJ ; 3: e1395, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587353

RESUMO

Hexavalent chromium [Cr(VI)] is a soluble carcinogen that has caused widespread contamination of soil and water in many industrial nations. Bacteria have the potential to aid remediation as certain strains can catalyze the reduction of Cr(VI) to insoluble and less toxic Cr(III). Here, we examine Cr(VI) reducing Microbacterium spp. (Cr-K1W, Cr-K20, Cr-K29, and Cr-K32) isolated from contaminated sediment (Seymore, Indiana) and show varying chromate responses despite the isolates' phylogenetic similarity (i.e., identical 16S rRNA gene sequences). Detailed analysis identified differences based on genomic metabolic potential, growth and general metabolic capabilities, and capacity to resist and reduce Cr(VI). Taken together, the discrepancies between the isolates demonstrate the complexity inter-strain variation can have on microbial physiology and related biogeochemical processes.

19.
Environ Sci Technol ; 49(22): 13454-62, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26501957

RESUMO

Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of amoA, hao, nirK, and norB were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures exposed to different metals (Ni(II), Zn(II), Cd(II), and Pb(II)). There was significant decrease in sOUR with increasing concentrations for Ni(II) (0.03-3 mg/L), Zn(II) (0.1-10 mg/L), and Cd(II) (0.03-1 mg/L) (p < 0.05). However, no considerable changes in sOUR were observed with Pb(II) (1-100 mg/L), except at a dosage of 1000 mg/L causing 84% inhibition. Based on RT-qPCR data, the transcript levels of amoA and hao decreased when exposed to Ni(II) dosages. Slight up-regulation of amoA, hao, and nirK (0.5-1.5-fold) occurred after exposure to 0.3-3 mg/L Zn(II), although their expression decreased for 10 mg/L Zn(II). With the exception of 1000 mg/L Pb(II), stimulation of all genes occurred on Cd(II) and Pb(II) exposure. While overall the results show that RNA-based function-specific assays can be used as potential surrogates for measuring nitrification activity, the degree of inhibition inferred from sOUR and gene transcription is different. We suggest that variations in transcription of functional genes may supplement sOUR based assays as early warning indicators of upsets in nitrification.


Assuntos
Bactérias/efeitos dos fármacos , Reatores Biológicos/microbiologia , Metais Pesados/toxicidade , Amônia/metabolismo , Bactérias/genética , Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrificação , Nitrogênio/metabolismo , Regulação para Cima , Águas Residuárias/química , Águas Residuárias/microbiologia
20.
PLoS One ; 10(5): e0124158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26010362

RESUMO

Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the effects of WGA on 31 different microbial communities from five biotopes that also included low-biomass samples from drinking water and groundwater. Our findings provide evidence that microbiome segregation by biotope was possible despite WGA treatment. Nevertheless, samples from different biotopes revealed different levels of distortion, with genomic GC content significantly correlated with WGA perturbation. Certain phylogenetic clades revealed a homogenous trend across various sample types, for instance Alpha- and Betaproteobacteria showed a decrease in their abundance after WGA treatment. On the other hand, Enterobacteriaceae, an important biomarker group for fecal contamination in groundwater and drinking water, were strongly affected by WGA treatment without a predictable pattern. These novel results describe the impact of WGA on low-biomass samples and may highlight issues to be aware of when designing future metagenomic studies that necessitate preceding WGA treatment.


Assuntos
Genoma Bacteriano , Microbiota/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Bactérias/classificação , Bactérias/genética , Composição de Bases/genética , Biofilmes , Ecossistema , Tamanho do Genoma , Nitrogênio/metabolismo , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA