Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870416

RESUMO

In recent years, a new phenomenon of early olive drop is causing production losses in olive groves throughout northern Italy. To analyze the possible causes, field and laboratory trials were performed to assess the involvement of fungal pathogens and insect pests in this disease. External and internal symptoms of fungal infections or insect-feeding activities were researched. Fungi present in healthy and dislodged olives were investigated. The relationship between olives that fell and Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) infestation was assessed in a controlled infestation trial, and the effectiveness of an insecticidal strategy in reducing early olive drop was tested in open field conditions. A comparable number of fungi, mostly endophytes, were isolated and identified from both healthy and dislodged olives. The damage observed on dislodged olives was primarily ascribed to pentatomids feeding activity. Six stink bugs species were found in olive canopies, that is, the invasive H. halys, which was by far the most abundant, and Acrosternum heegeri Fieber, Nezara viridula (Linnaeus), Palomena prasina (Linnaeus), Piezodorus lituratus (Fabricious), and Rhaphigaster nebulosa (Poda). Halyomorpha halys caused intense fruit drop in the controlled infestation trial, and its infestation level significantly correlated with the number of olives that fell. Native stink bugs, present in much lower population compared to H. halys, could also partially contribute to early drop of olives. Insect proof net significantly reduced the early olive drop disease, while insecticide applications only partially reduced the stink bugs population density and, proportionally, early olive drop.

2.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37951293

RESUMO

Ambrosia beetles are fungal-growing insects excavating galleries deep inside the wood. Their success as invaders increased scientific interest towards them. However, most studies on their microbiota targeted their fungal associates whereas the role of bacterial associates is understudied. To explore the role of abundant microbial associates, we isolated bacteria from active galleries of two widespread ambrosia beetles, Xylosandrus crassiusculus and X. germanus. These isolates were classified within the Erwiniaceae family and through a phylogenetic analysis including isolates from other insects we showed that they clustered with isolates obtained from ambrosia and bark beetles, including Erwinia typographi. The whole genome analysis of the isolate from active galleries of X. crassiusculus suggested that this bacterium plays both a nutritional role, by providing essential amino acids and enzymes for the hydrolysis of plant biomass, and a defensive role, by producing antibiotics. This defensive role was also tested in vitro against fungi, including mutualists, common associates, and parasites. The bacteria inhibited the growth of some of the common associates and parasites but did not affect mutualists. Our study supported the hypothesis of a mutualist role of Erwiniaceae bacteria in ambrosia beetles and highlighed the importance of bacteria in maintaining the symbiosis of their host with nutritional fungi.


Assuntos
Besouros , Gorgulhos , Animais , Besouros/microbiologia , Gorgulhos/microbiologia , Ambrosia , Filogenia , Bactérias/genética
3.
Front Insect Sci ; 3: 1175138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38469512

RESUMO

Popillia japonica, a priority pest for the EU, was first detected in Northern Italy in 2014. Since its discovery, the outbreak extended over an area of more than 16,000 square kilometers in Northern Italy and Southern Switzerland. In this review, we summarize the state-of-the-art of research conducted in Italy on both the spreading capacity and control measures of P. japonica. Chemical, physical, and biological control measures deployed since its detection are presented, by highlighting their strengths and weaknesses. An in-depth study of the ecosystems invaded by P. japonica disclosed the presence and pathogenicity of natural strains of entomopathogenic fungi and nematodes, some of which have shown to be particularly aggressive towards the larvae of this pest under laboratory conditions. The Plant Health authorities of the Lombardy and Piedmont regions, with the support of several research institutions, played a crucial role in the initial eradication attempt and subsequently in containing the spread of P. japonica. Control measures were performed in the infested area to suppress adult populations of P. japonica by installing several traps (e.g., for mass trapping, for auto-dissemination of the fungus Metarhizium anisopliae, and "attract & kill"). For larval control, the infested fields were treated with commercial strains of the entomopathogenic fungus M. anisopliae and nematode Heterorhabditis bacteriophora. Future studies will aim at integrating phenological and spread models developed with the most effective control measures, within an ecologically sustainable approach.

4.
J Econ Entomol ; 114(4): 1716-1721, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34137895

RESUMO

Philaenus spumarius (Linnaeus, 1758) (Hemiptera: Aphrophoridae) is considered the main vector of Xylella fastidiosa (Wells Raju et al. 1986) (Xathomonadales: Xanthomonadaceae), agent of the Olive Quick Decline Syndrome in Southern Europe. To limit the spread of the disease, it is of primary importance to identify effective control measures against the vector. Besides chemical control, cultural practices could potentially help reducing vector activity and population density. Here, we tested the effectiveness of three different ground cover management practices in controlling vector populations in olive groves in the Abruzzo region (Central Italy). We compared tillage (two tillage operations in spring followed by two cuts in summer), frequent mowing (four cuts from spring to summer) and a control (two cuts in summer) by sampling vectors both in the ground vegetation and in the tree canopy. In late spring, after the peak of the population, tillage reduced P. spumarius density by 60%, while frequent mowing only reduced the density by 20% compared to control plots. The differences tended to disappear with time. The treatments had the same effect on the vector density in both the ground vegetation and tree canopy. The vectors were more concentrated in the ground cover at the beginning of the season while in summer both the canopy and ground vegetation had the same vector density. Our findings suggest that tillage is a viable option for the containment of P. spumarius, as frequent mowing did not achieve sufficient control efficacy.


Assuntos
Hemípteros , Olea , Xylella , Animais , Doenças das Plantas
5.
Ecol Lett ; 24(2): 288-297, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33201599

RESUMO

Measuring habitat specialisation is pivotal for predicting species extinctions and for understanding consequences on ecosystem functioning. Here, we sampled pollinator and natural enemy communities in all major habitat types occurring across multiple agricultural landscapes and used species-habitat networks to determine how habitat specialisation changed along gradients in landscape composition and configuration. Although it is well known that landscape simplification often causes the replacement of specialists with generalists, our study provided evidence for intraspecific variation in habitat specialisation, highlighting how a large number of arthropod species adapted their way of selecting habitat resources depending on the landscape structure. Groups with higher diet specialisation and limited foraging flexibility appeared to have a reduced ability to respond to landscape changes, indicating that some arthropod taxa are better able than others to adapt to an increasingly broad set of resources and persist in highly impacted landscapes.


Assuntos
Artrópodes , Ecossistema , Agricultura , Animais , Extinção Biológica , Especialização
6.
Proc Biol Sci ; 287(1937): 20202116, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33109015

RESUMO

Recent synthesis studies have shown inconsistent responses of crop pests to landscape composition, imposing a fundamental limit to our capacity to design sustainable crop protection strategies to reduce yield losses caused by insect pests. Using a global dataset composed of 5242 observations encompassing 48 agricultural pest species and 26 crop species, we tested the role of pest traits (exotic status, host breadth and habitat breadth) and environmental context (crop type, range in landscape gradient and climate) in modifying the pest response to increasing semi-natural habitats in the surrounding landscape. For natives, increasing semi-natural habitats decreased the abundance of pests that exploit only crop habitats or that are highly polyphagous. On the contrary, populations of exotic pests increased with an increasing cover of semi-natural habitats. These effects might be related to changes in host plants and other resources across the landscapes and/or to modified top-down control by natural enemies. The range of the landscape gradient explored and climate did not affect pests, while crop type modified the response of pests to landscape composition. Although species traits and environmental context helped in explaining some of the variability in pest response to landscape composition, the observed large interspecific differences suggest that a portfolio of strategies must be considered and implemented for the effective control of rapidly changing communities of crop pests in agroecosystems.


Assuntos
Produtos Agrícolas , Ecossistema , Agricultura , Animais , Insetos , Controle Biológico de Vetores
7.
Oecologia ; 188(1): 193-202, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29797077

RESUMO

Elevational gradients are characterized by strong abiotic variation within small geographical distances and provide a powerful tool to evaluate community response to variation in climatic and other environmental factors. We explored how temperature and habitat diversity shape the diversity of holometabolous predator and parasitoid insects along temperate elevational gradients in the European Alps. We surveyed insect communities along 12 elevational transects that were selected to separate effects of temperature from those of habitat diversity. Pitfall traps and pan traps were placed every 100 m of elevation increment along the transects ranging from 120 to 2200 m a.s.l. Sampling took place once a month from June to September 2015. Four groups characterized by having at least one life stage behaving as predator or parasitoid were examined: tachinids (Diptera), hoverflies (Diptera), sphecids (Hymenoptera) and ground beetles (Coleoptera). Species richness and evenness changed with elevation, but the shape and direction of the elevation-diversity patterns varied between groups. The effect of temperature on species richness was positive for all groups except for hoverflies. Habitat diversity did not affect species richness, while it modulated the evenness of most groups. Often, elevational patterns of species richness and evenness were contrasting. Our study indicates that natural enemies characterized by diverse ecological requirements can be differentially affected by temperature and habitat diversity across the same elevational gradients. As climate warming is predicted to increase mean annual temperatures and exacerbate weather variability, it is also expected to strongly influence natural enemies and their ability to regulate herbivore populations.


Assuntos
Biodiversidade , Ecossistema , Altitude , Animais , Geografia , Insetos , Temperatura
8.
Parasit Vectors ; 9: 150, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26979749

RESUMO

BACKGROUND: The Culex pipiens complex includes the most widespread mosquito species in the world. Cx. pipiens is the primary vector of the West Nile Virus (WNV) in Europe and North America. Cases of WNV have been recorded in Italy since 1998. In particular, wet areas along the Po River are considered some of the most WNV affected areas in Italy. Here, we analyzed the genetic structure of ten Cx. pipiens populations collected in the last part of the Po River including the Delta area. METHODS: We assessed the genetic variability of two mitochondrial markers, cytochrome oxidase 1 (COI) and 2 (COII), for a total of 1200 bp, and one nuclear marker, a fragment of acetylcholinesterase-2 (ace-2), 502 bp long. The effect of the landscape features was evaluated comparing haplotype and nucleotide diversity with the landscape composition. RESULTS: The analysis showed a high genetic diversity in both COI and COII gene fragments mainly shared by the populations in the Delta area. The COI-COII network showed that the set of haplotypes found was grouped into three main supported lineages with the higher genetic variability gathered in two of the three lineages. By contrast, ace-2 fragment did not show the same differentiation, displaying alleles grouped in a single clade. Finally, a positive correlation between mitochondrial diversity and natural wetland areas was found. CONCLUSIONS: The high mitochondrial genetic diversity found in Cx. pipiens populations from the Po River Delta contrasts with the low variability of inland populations. The different patterns of genetic diversity found comparing mitochondrial and nuclear markers could be explained by factors such as differences in effective population size between markers, sex biased dispersal or lower fitness of dispersing females. Moreover, the correlation between genetic diversity and wetland areas is consistent with ecosystem stability and lack of insecticide pressure characteristic of this habitat. The mtDNA polymorphism found in the Po River Delta is even more interesting due to possible linkages between the mitochondrial lineages and different biting behaviors of the mosquitoes influencing their vector ability of arboviral infections.


Assuntos
Culex/classificação , Culex/genética , Variação Genética , Animais , Análise por Conglomerados , Complexo IV da Cadeia de Transporte de Elétrons/genética , Epidemias , Haplótipos , Proteínas de Insetos/genética , Itália/epidemiologia , Proteínas Mitocondriais/genética , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Febre do Nilo Ocidental/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA