Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cien Saude Colet ; 29(7): e02242024, 2024 Jul.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38958309

RESUMO

This study investigated educational interventions for the prevention and management of adverse events following immunisation. This a systematic review was conducted by examining observational studies, with no restriction as to language or year, registered in PROSPERO with the identifier CRD42022313144 and by searching the MEDLINE, LILACS, Embase, CINAHL and Scopus databases. Two researchers selected the studies, extracted the data and assessed the risk of study bias; disagreements were resolved by a third researcher. A total of six articles met the inclusion criteria of the systematic review and the studies reported significant post-intervention improvements in staff conduct in relation to immunisation. It was concluded that educational strategies that lead to continued professional development in relation to vaccination in primary care were effective in reducing and/or eradicating immunisation errors and adverse events following immunisation.


O estudo tem como objetivo investigar as intervenções educativas para a prevenção e conduta dos eventos adversos pós-vacinação. Trata-se de uma revisão sistemática realizada por meio da análise de estudos observacionais sem restrição de idioma e ano com registro no PROSPERO pelo identificador CRD42022313144 e busca nas bases de dados MEDLINE, LILACS, Embase, CINAHL e Scopus. Dois pesquisadores selecionaram os estudos, extraíram os dados e avaliaram o risco de viés, as discordâncias foram resolvidas por um terceiro pesquisador. Atenderam os critérios de inclusão da revisão sistemática um total de seis artigos e os estudos apresentaram melhoras significativas pós-intervenção na conduta dos profissionais em relação à imunização. Conclui-se que o fornecimento de estratégias educativas de educação permanente no âmbito vacinal da atenção primária é eficaz para reduzir e/ou erradicar os erros de imunização e eventos adversos pós-vacinação.


Assuntos
Imunização , Vacinação , Humanos , Imunização/efeitos adversos , Vacinação/efeitos adversos , Atenção Primária à Saúde , Pessoal de Saúde/educação
2.
Mol Biochem Parasitol ; 259: 111629, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750697

RESUMO

Leishmaniases comprise a group of infectious parasitic diseases caused by various species of Leishmania and are considered a significant public health problem worldwide. Only a few medications, including miltefosine, amphotericin B, and meglumine antimonate, are used in current therapy. These medications are associated with severe side effects, low efficacy, high cost, and the need for hospital support. Additionally, there have been occurrences of drug resistance. Additionally, only a limited number of drugs, such as meglumine antimonate, amphotericin B, and miltefosine, are available, all of which are associated with severe side effects. In this context, the need for new effective drugs with fewer adverse effects is evident. Therefore, this study investigated the anti-Leishmania activity of a dichloromethane fraction (DCMF) extracted from Arrabidaea brachypoda roots. This fraction inhibited the viability of L. infantum, L. braziliensis, and L. Mexicana promastigotes, with IC50 values of 10.13, 11.44, and 11.16 µg/mL, respectively, and against L. infantum amastigotes (IC50 = 4.81 µg/mL). Moreover, the DCMF exhibited moderate cytotoxicity (CC50 = 25.15) towards RAW264.7 macrophages, with a selectivity index (SI) of 5.2. Notably, the DCMF caused damage to the macrophage genome only at 40 µg/mL, which is greater than the IC50 found for all Leishmania species. The results suggest that DCMF demonstrates similar antileishmanial effectiveness to isolated brachydin B, without causing genotoxic effects on mammalian cells. This finding is crucial because the isolation of the compounds relies on several steps and is very costly while obtaining the DCMF fraction is a simple and cost-effective process. Furthermore, In addition, the potential mechanisms of action of brachydins were also investigated. The computational analysis indicates that brachydin compounds bind to the Triosephosphate isomerase (TIM) enzyme via two main mechanisms: destabilizing the interface between the homodimers and interacting with catalytic residues situated at the site of binding. Based on all the results, DCMF exhibits promise as a therapeutic agent for leishmaniasis due to its significantly reduced toxicity in comparison to the adverse effects associated with current reference treatments.


Assuntos
Antiprotozoários , Bignoniaceae , Flavonoides , Leishmania , Simulação de Acoplamento Molecular , Extratos Vegetais , Bignoniaceae/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/química , Animais , Leishmania/efeitos dos fármacos , Leishmania/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Camundongos , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Células RAW 264.7
3.
Clin Exp Nephrol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678166

RESUMO

Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.

4.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453365

RESUMO

KRAS is a proto-oncogene encoding a small GTPase. Mutations contribute to ∼30% of human solid tumours, including lung adenocarcinoma, pancreatic, and colorectal carcinomas. Most KRAS activating mutations interfere with GTP hydrolysis, essential for its role as a molecular switch, leading to alterations in their molecular environment and oncogenic signalling. However, the precise signalling cascades these mutations affect are poorly understood. Here, APEX2 proximity labelling was used to profile the molecular environment of WT, G12D, G13D, and Q61H-activating KRAS mutants under starvation and stimulation conditions. Through quantitative proteomics, we demonstrate the presence of known KRAS interactors, including ARAF and LZTR1, which are differentially captured by WT and KRAS mutants. Notably, the KRAS mutations G12D, G13D, and Q61H abrogate their association with LZTR1, thereby affecting turnover. Elucidating the implications of LZTR1-mediated regulation of KRAS protein levels in cancer may offer insights into therapeutic strategies targeting KRAS-driven malignancies.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/genética , Mutação , Ubiquitina-Proteína Ligases , Proteínas Culina/genética , Fatores de Transcrição
5.
J Agric Food Chem ; 72(8): 4225-4236, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38354215

RESUMO

GH 62 arabinofuranosidases are known for their excellent specificity for arabinoxylan of agroindustrial residues and their synergism with endoxylanases and other hemicellulases. However, the low thermostability of some GH enzymes hampers potential industrial applications. Protein engineering research highly desires mutations that can enhance thermostability. Therefore, we employed directed evolution using one round of error-prone PCR and site-saturation mutagenesis for thermostability enhancement of GH 62 arabinofuranosidase from Aspergillus fumigatus. Single mutants with enhanced thermostability showed significant ΔΔG changes (<-2.5 kcal/mol) and improvements in perplexity scores from evolutionary scale modeling inverse folding. The best mutant, G205K, increased the melting temperature by 5 °C and the energy of denaturation by 41.3%. We discussed the functional mechanisms for improved stability. Analyzing the adjustments in α-helices, ß-sheets, and loops resulting from point mutations, we have obtained significant knowledge regarding the potential impacts on protein stability, folding, and overall structural integrity.


Assuntos
Glicosídeo Hidrolases , Engenharia de Proteínas , Estabilidade Enzimática , Temperatura , Mutagênese
6.
Psychiatr Serv ; 74(5): 463-471, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377367

RESUMO

OBJECTIVE: The purpose of this study was to examine the efficacy of the Nutrition and Exercise for Wellness and Recovery (NEW-R) intervention for improving competency and behaviors related to diet, physical activity, and weight management. METHODS: Participants with psychiatric disabilities were recruited from four community mental health agencies and a hospital-based psychiatric outpatient clinic and randomly assigned to the NEW-R intervention (N=55) or control condition (N=58). Outcome measures included the Perceived Competence Scale, Health-Promoting Lifestyle Profile (HPLP), and weight change; random-effects regression models were used. A follow-up analysis examined the interactions of group, time, and site. RESULTS: Fifty of the 55 intervention participants and 57 of the 58 control participants completed the study. The two groups did not differ significantly on any measured baseline characteristic. The intervention group had statistically significant improvements, compared with the control group, in perceived competence for exercise and healthy eating, total HPLP score, and scores on two HPLP subscales (nutrition and spiritual growth). No significant difference between groups was found for weight loss. A study condition × time × site effect was observed: at the three sites where mean weight loss occurred, NEW-R participants lost significantly more weight than did control participants. CONCLUSIONS: NEW-R offers promise as an intervention that can initiate the change to healthy lifestyle behaviors and boost perceived competence in a healthy lifestyle. It may also be effective for weight loss when administered in supportive settings.


Assuntos
Exercício Físico , Estilo de Vida , Humanos , Redução de Peso
7.
An Acad Bras Cienc ; 94(suppl 3): e20211501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36477239

RESUMO

COVID-19 is a pandemic disease caused by the SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) responsible for millions of deaths worldwide. Although the respiratory system is the main target of COVID-19, the disease can affect other organs, including the kidneys. Acute Kidney Injury (AKI), commonly seen in patients infected with COVID-19, has a multifactorial cause. Several studies associate this injury with the direct involvement of the virus in renal cells and the indirect damage stimulated by the infection. The direct cytopathic effects of SARS-CoV-2 are due to the entry and replication of the virus in renal cells, changing several regulatory pathways, especially the renin-angiotensin-aldosterone system (RAAS), with repercussions on the kallikrein-kinin system (KKS). Furthermore, the virus can deregulate the immune system, leading to an exaggerated response of inflammatory cells, characterizing the state of hypercytokinemia. The such exaggerated inflammatory response is commonly associated with hemodynamic changes, reduced renal perfusion, tissue hypoxia, generation of reactive oxygen species (ROS), endothelial damage, and coagulopathies, which can result in severe damage to the renal parenchyma. Thereby, understanding the molecular mechanisms and pathophysiology of kidney injuries induced by SARS-COV-2 is of fundamental importance to obtaining new therapeutic insights for the prevention and management of AKI.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , COVID-19/complicações , SARS-CoV-2 , Injúria Renal Aguda/etiologia
8.
J Chem Inf Model ; 62(17): 4083-4094, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044342

RESUMO

We have used molecular dynamics (MD) simulations with hybrid quantum mechanics/molecular mechanics (QM/MM) potentials to investigate the reaction mechanism for covalent inhibition of cathepsin K and assess the reversibility of inhibition. The computed free energy profiles suggest that a nucleophilic attack by the catalytic cysteine on the inhibitor warhead and proton transfer from the catalytic histidine occur in a concerted manner. The results indicate that the reaction is more strongly exergonic for the alkyne-based inhibitors, which bind irreversibly to cathepsin K, than for the nitrile-based inhibitor odanacatib, which binds reversibly. Gas-phase energies were also calculated for the addition of methanethiol to structural prototypes for a number of warheads of interest in cysteine protease inhibitor design in order to assess electrophilicity. The approaches presented in this study are particularly applicable to assessment of novel warheads, and computed transition state geometries can be incorporated into molecular models for covalent docking.


Assuntos
Inibidores de Cisteína Proteinase , Simulação de Dinâmica Molecular , Catálise , Catepsina K/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Proteases , Teoria Quântica
9.
Nat Med ; 28(6): 1277-1287, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654907

RESUMO

Alcohol-related liver disease (ALD) is a major cause of liver-related death worldwide, yet understanding of the three key pathological features of the disease-fibrosis, inflammation and steatosis-remains incomplete. Here, we present a paired liver-plasma proteomics approach to infer molecular pathophysiology and to explore the diagnostic and prognostic capability of plasma proteomics in 596 individuals (137 controls and 459 individuals with ALD), 360 of whom had biopsy-based histological assessment. We analyzed all plasma samples and 79 liver biopsies using a mass spectrometry (MS)-based proteomics workflow with short gradient times and an enhanced, data-independent acquisition scheme in only 3 weeks of measurement time. In plasma and liver biopsy tissues, metabolic functions were downregulated whereas fibrosis-associated signaling and immune responses were upregulated. Machine learning models identified proteomics biomarker panels that detected significant fibrosis (receiver operating characteristic-area under the curve (ROC-AUC), 0.92, accuracy, 0.82) and mild inflammation (ROC-AUC, 0.87, accuracy, 0.79) more accurately than existing clinical assays (DeLong's test, P < 0.05). These biomarker panels were found to be accurate in prediction of future liver-related events and all-cause mortality, with a Harrell's C-index of 0.90 and 0.79, respectively. An independent validation cohort reproduced the diagnostic model performance, laying the foundation for routine MS-based liver disease testing.


Assuntos
Hepatopatias , Proteômica , Biomarcadores/metabolismo , Biópsia , Humanos , Inflamação/patologia , Fígado/metabolismo , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia , Hepatopatias/metabolismo
10.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35590073

RESUMO

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Assuntos
Melanoma , Proteômica , Humanos , Microdissecção e Captura a Laser/métodos , Espectrometria de Massas/métodos , Melanoma/genética , Proteoma/química , Proteômica/métodos
11.
Mol Syst Biol ; 18(5): e10947, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35579278

RESUMO

Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteoma , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteoma/metabolismo , Proteômica
12.
Nat Biotechnol ; 40(5): 692-702, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35102292

RESUMO

Implementing precision medicine hinges on the integration of omics data, such as proteomics, into the clinical decision-making process, but the quantity and diversity of biomedical data, and the spread of clinically relevant knowledge across multiple biomedical databases and publications, pose a challenge to data integration. Here we present the Clinical Knowledge Graph (CKG), an open-source platform currently comprising close to 20 million nodes and 220 million relationships that represent relevant experimental data, public databases and literature. The graph structure provides a flexible data model that is easily extendable to new nodes and relationships as new databases become available. The CKG incorporates statistical and machine learning algorithms that accelerate the analysis and interpretation of typical proteomics workflows. Using a set of proof-of-concept biomarker studies, we show how the CKG might augment and enrich proteomics data and help inform clinical decision-making.


Assuntos
Bases de Conhecimento , Medicina de Precisão/métodos , Proteômica , Algoritmos , Tomada de Decisões Assistida por Computador , Aprendizado de Máquina , Reconhecimento Automatizado de Padrão , Medicina de Precisão/normas , Proteômica/normas , Proteômica/estatística & dados numéricos
13.
J Clin Med ; 10(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34682795

RESUMO

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease affecting up to 6.5% of the general population. There is no simple definition of NASH, and the molecular mechanism underlying disease pathogenesis remains elusive. Studies applying single omics technologies have enabled a better understanding of the molecular profiles associated with steatosis and hepatic inflammation-the commonly accepted histologic features for diagnosing NASH, as well as the discovery of novel candidate biomarkers. Multi-omics analysis holds great potential to uncover new insights into disease mechanism through integrating multiple layers of molecular information. Despite the technical and computational challenges associated with such efforts, a few pioneering studies have successfully applied multi-omics technologies to investigate NASH. Here, we review the most recent technological developments in mass spectrometry (MS)-based proteomics, metabolomics, and lipidomics. We summarize multi-omics studies and emerging omics biomarkers in NASH and highlight the biological insights gained through these integrated analyses.

14.
Elife ; 102021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581667

RESUMO

Collagen-rich tissues have poor reparative capacity that predisposes to common age-related disorders such as osteoporosis and osteoarthritis. We used in vivo pulsed SILAC labelling to quantify new protein incorporation into cartilage, bone, and skin of mice across the healthy life course. We report dynamic turnover of the matrisome, the proteins of the extracellular matrix, in bone and cartilage during skeletal maturation, which was markedly reduced after skeletal maturity. Comparing young adult with older adult mice, new protein incorporation was reduced in all tissues. STRING clustering revealed changes in epigenetic modulators across all tissues, a decline in chondroprotective growth factors such as FGF2 and TGFß in cartilage, and clusters indicating mitochondrial dysregulation and reduced collagen synthesis in bone. Several pathways were implicated in age-related disease. Fewer changes were observed for skin. This methodology provides dynamic protein data at a tissue level, uncovering age-related molecular changes that may predispose to disease.


Assuntos
Fatores Etários , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Pele/metabolismo , Animais , Desenvolvimento Ósseo , Epigênese Genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteoma , Fator de Crescimento Transformador beta/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-34205707

RESUMO

This work addresses the reuse of waste products as a raw material for lime putties, which are one of the components of mortar. 1:3 Lime/sand mortars very similar to conventional construction mortars were prepared using a lime putty obtained from the treatment of phosphogypsum with sodium hydroxide. The physical, rheological and mechanical properties of this phosphogypsum-derived mortar have been studied, as well as the mineralogical composition, microstructure by scanning electron microscope (SEM) and curing process by monitoring carbonation and ultrasonic propagation velocity. Considering the negative influence of sulphates on the hardened material, the behaviour of the material after sulphates precipitation by adding barium sulphate was additionally tested. Carbonation progressed from the outside to the inside of the specimen through the porous system by Liesegang rings patterns for mortars with soluble sulphates, while the carbonation with precipitated sulphates was controlled by diffusion-precipitation. Overall, the negative influence of low-sulphate contents on the mechanical properties of mortars was verified. It must be highlighted the importance of their precipitation to obtain adequate performance.


Assuntos
Compostos de Cálcio , Materiais de Construção , Sulfato de Cálcio , Óxidos , Fósforo
16.
Proteins ; 89(10): 1340-1352, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34075621

RESUMO

Recently, a bacterium strain of Ideonella sakaiensis was identified with the uncommon ability to degrade the poly(ethylene terephthalate) (PET). The PETase from I. sakaiensis strain 201-F6 (IsPETase) catalyzes the hydrolysis of PET converting it to mono(2-hydroxyethyl) terephthalic acid (MHET), bis(2-hydroxyethyl)-TPA (BHET), and terephthalic acid (TPA). Despite the potential of this enzyme for mitigation or elimination of environmental contaminants, one of the limitations of the use of IsPETase for PET degradation is the fact that it acts only at moderate temperature due to its low thermal stability. Besides, molecular details of the main interactions of PET in the active site of IsPETase remain unclear. Herein, molecular docking and molecular dynamics (MD) simulations were applied to analyze structural changes of IsPETase induced by PET binding. Results from the essential dynamics revealed that the ß1-ß2 connecting loop is very flexible. This loop is located far from the active site of IsPETase and we suggest that it can be considered for mutagenesis to increase the thermal stability of IsPETase. The free energy landscape (FEL) demonstrates that the main change in the transition between the unbound to the bound state is associated with the ß7-α5 connecting loop, where the catalytic residue Asp206 is located. Overall, the present study provides insights into the molecular binding mechanism of PET into the IsPETase structure and a computational strategy for mapping flexible regions of this enzyme, which can be useful for the engineering of more efficient enzymes for recycling plastic polymers using biological systems.


Assuntos
Proteínas de Bactérias/metabolismo , Burkholderiales/metabolismo , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Biocatálise , Hidrólise
17.
Interface Focus ; 11(4): 20200072, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34123356

RESUMO

Glioblastoma (GBM) is the most aggressive and common brain cancer in adults with the lowest life expectancy. The current neuro-oncology practice has incorporated genes involved in key molecular events that drive GBM tumorigenesis as biomarkers to guide diagnosis and design treatment. This study summarizes findings describing the significant heterogeneity of GBM at the transcriptional and genomic levels, emphasizing 18 driver genes with clinical relevance. A pattern was identified fitting the stem cell model for GBM ontogenesis, with an upregulation profile for MGMT and downregulation for ATRX, H3F3A, TP53 and EGFR in the mesenchymal subtype. We also detected overexpression of EGFR, NES, VIM and TP53 in the classical subtype and of MKi67 and OLIG2 genes in the proneural subtype. Furthermore, we found a combination of the four biomarkers EGFR, NES, OLIG2 and VIM with a remarkable differential expression pattern which confers them a strong potential to determine the GBM molecular subtype. A unique distribution of somatic mutations was found for the young and adult population, particularly for genes related to DNA repair and chromatin remodelling, highlighting ATRX, MGMT and IDH1. Our results also revealed that highly lesioned genes undergo differential regulation with particular biological pathways for young patients. This multi-omic analysis will help delineate future strategies related to the use of these molecular markers for clinical decision-making in the medical routine.

18.
PLoS Biol ; 19(4): e3001144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872299

RESUMO

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Assuntos
Miocárdio/metabolismo , Proteoma/metabolismo , Animais , Coração/fisiologia , Ventrículos do Coração/química , Ventrículos do Coração/metabolismo , Cavalos , Humanos , Camundongos , Modelos Animais , Miocárdio/química , Especificidade de Órgãos , Processamento de Proteína Pós-Traducional , Proteoma/análise , Proteômica/métodos , Ratos , Especificidade da Espécie , Suínos , Peixe-Zebra
19.
Gen Hosp Psychiatry ; 70: 10-17, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33639449

RESUMO

OBJECTIVE: Prior research has not addressed whether both serious mental illness (SMI) and other mental health (OMH) disorders affect the likelihood of 30-day readmissions after medical hospitalizations, or whether post-discharge use of outpatient medical, mental health, and pharmacy services is associated with readmission likelihood. METHODS: Using the Truven Health Analytics MarketScan® Medicaid Multi-State Database, we studied 43,817 Medicaid beneficiaries, age 18-64, following discharge from medical hospitalizations in 2011. Logistic regression models compared all-cause, 30-day readmissions among those with SMI, OMH, and no psychiatric diagnosis, and examined associations of 30-day outpatient service use with 30-day readmissions. RESULTS: Thirty-day readmission rates were 15.9% (SMI), 13.8% (OMH), and 11.7% (no mental illness). In multivariable analysis, compared to patients without mental illness, odds of readmission were greater for those with SMI (aOR = 1.43, 95%CI:1.32-1.51) and OMH (aOR = 1.21, 95%CI:1.12-1.30), and lower among those using outpatient mental health services (aOR = 0.50, 95%CI: 0.44-0.56). CONCLUSION: The adult Medicaid population disproportionately includes patients with SMI and OMH disorders, both of which were found to be associated with 30-day hospital readmissions. Receiving outpatient mental health services after hospital discharge may be protective against readmission following medical hospitalizations, suggesting the need for further research on these topics.


Assuntos
Transtornos Mentais , Readmissão do Paciente , Adolescente , Adulto , Assistência ao Convalescente , Assistência Ambulatorial , Atenção à Saúde , Hospitalização , Humanos , Transtornos Mentais/epidemiologia , Transtornos Mentais/terapia , Saúde Mental , Pessoa de Meia-Idade , Pacientes Ambulatoriais , Alta do Paciente , Estudos Retrospectivos , Estados Unidos/epidemiologia , Adulto Jovem
20.
J Biomol Struct Dyn ; 39(6): 2044-2055, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32174264

RESUMO

Allosteric changes modulate the enzymatic activity, leading to activation or inhibition of the molecular target. Understanding the induced fit accommodation mechanism of a ligand in its lowest-free energy state and the subsequent conformational changes induced in the protein are important questions for drug design. In the present study, molecular dynamics (MD) simulations, binding free energy calculations, and principal component analysis (PCA) were applied to analyze the glycerol-3-phosphate dehydrogenase of Leishmania mexicana (LmGPDH) conformational changes induced by its cofactor and substrate binding. GPDH is a nicotinamide adenine dinucleotide (NAD)-dependent enzyme, which has been reported as an interesting target for drug discovery and development against leishmaniasis. Despite its relevance for glycolysis and pentose phosphate pathways, the structural flexibility and conformational motions of LmGPDH in complex with NADH and dihydroxyacetone phosphate (DHAP) remain unexplored. Here, we analyzed the conformational dynamics of the enzyme-NADH complex (cofactor), and the enzyme-NADH-DHAP complex (adduct), mapped the hydrogen-bond interactions for the complexes and pointed some structural determinants of the enzyme that emerge from these contacts to NADH and DHAP. Finally, we proposed a consistent mechanism for the conformational changes on the first step of the reversible redox conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, indicating key residues and interactions that could be further explored in drug discovery.


Assuntos
Glicerolfosfato Desidrogenase , Leishmania mexicana , Glicerofosfatos , NAD
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA