Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39330530

RESUMO

Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the effect of relative humidity (RH) within the electrospinning chamber on the morphology of the resulting mats and how this affected the flow dynamics depending on whether or not the permeating liquid induced swelling in the membranes. An insolubilized PVA membrane was used as a hydrophilic filter model and a PVA membrane filled with iron oxide nanoparticles (IONPs) as a composite model (PVA + IONPs). The presence of IONPs increases the nanofiber diameter, which decreases when prepared under intermediate RH (IRH). Consequently, the nanofiber configuration, which is critical for filtration tortuosity, is influenced by RH. The initial swelling results in over 60% greater water flux through PVA + IONPs compared to PVA at an equivalent RH. This characterization helps to optimize membrane applications, highlighting that PVA + IONPs exhibit lower permeability values at IRH, indicating improved contaminant retention capabilities.

2.
Environ Sci Pollut Res Int ; 31(42): 54618-54633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39207620

RESUMO

Chromium and arsenic are among the priority pollutants to be controlled by regulatory and health agencies due to their ability to accumulate in food chains and the harmful effects on health resulting from the ingestion of food contaminated with metals and metalloids. In the present work, four biohybrid membrane systems were developed as alternatives for the removal of these pollutants, three based on polyvinyl alcohol polymeric mesh (PVA, PVA-magnetite, PVA L-cysteine) and one based on polybutylene adipate terephthalate (PBAT), all associated with bioremediation agents. The efficiency of the bioassociation process was assessed through count methods and microscopy. The removal capacity of these systems was evaluated in synthetic liquid medium, both in the absence and in the presence of soybean (Glycine max L.) seedlings. The content of chromium and arsenic was also analyzed in aerial and hypogeous tissues of seedlings grown on contaminated solid substrate. PVA and PVA-magnetite biohybrid membranes showed the highest removal rates, between 57 and 75% of the initial arsenic content and more than 80% of the initial chromium content after 48 h of treatment, when evaluated in synthetic liquid media with initial concentrations of 2.5 ppm of pentavalent arsenic and 5 ppm of hexavalent chromium, both in presence and absence of seedlings. PVA and PBAT promoted a significant reduction of arsenic translocation to the aerial parts, generally edible, of this crop of agronomic interest. The systems tested showed a high potential for biotechnological applications in matrices affected by the presence of arsenic and chromium.


Assuntos
Arsênio , Cromo , Glycine max , Plântula , Glycine max/metabolismo , Arsênio/metabolismo , Cromo/química , Biodegradação Ambiental
3.
Polymers (Basel) ; 15(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36904553

RESUMO

The efficiency in the capabilities to store and release antioxidants depends on the film morphology and its manufacturing process, as well as on the type and methodology used to obtain the polyphenol extracts. Here, hydroalcoholic extracts of black tea polyphenols (BT) were obtained and dropped onto different polyvinyl alcohol (PVA) aqueous solutions (water or BT aqueous extract with and without citric acid, CA) to obtain three unusual PVA electrospun mats containing polyphenol nanoparticles within their nanofibers. It was shown that the mat obtained through the nanoparticles precipitated in BT aqueous extract PVA solution presented the highest total polyphenol content and antioxidant activity, and that the addition of CA as an esterifier or PVA crosslinker interfered with the polyphenols. The release kinetics in different food simulants (hydrophilic, lipophilic and acidic) were fitted using Fick's diffusion law and Peppas' and Weibull's models, showing that polymer chain relaxation is the main mechanism in all food simulants except for the acidic, which presented an abrupt release by Fick's diffusion mechanism of about 60% before being controlled. This research provides a strategy for the development of promising controlled-release materials for active food packaging, mainly for hydrophilic and acidic food products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA