Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Luminescence ; 34(1): 23-38, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30421538

RESUMO

Trivalent europium (Eu3+ ) and terbium (Tb3+ ) ions are important activator centers used in different host lattices to produce red and green emitting materials. The current work shows the design of new clay minerals to act as host lattices for rare earth (RE) ions. Based on the hectorite structure, nano-chlorohectorites and nano-fluorohectorites were developed by replacing the OH- present in the hectorite structure with Cl- or F- , thus avoiding the luminescence quenching expected due to the OH- groups. The produced matrices were characterized through X-ray powder diffraction (XPD), transmission electron microscopy (TEM), FT-IR, 29 Si MAS (magic angle spinning) NMR, nitrogen sorption, thermogravimetry-differential scanning calorimetry (TGA-DSC) and luminescence measurements, indicating all good features expected from a host lattice for RE ions. The nano-clay materials were successfully doped with Eu3+ and/or Tb3+ to yield materials preserving the hectorite crystal structure and showing the related luminescence emissions. Thus, the present work shows that efficient RE3+ luminescence can be obtained from clays without the use of organic 'antenna' molecules.


Assuntos
Európio/química , Nanoestruturas/química , Térbio/química , Argila , Cor , Medições Luminescentes , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
2.
ACS Appl Mater Interfaces ; 8(18): 11592-602, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27088662

RESUMO

Synthetic hackmanites, Na8Al6Si6O24(Cl,S)2, showing efficient purple tenebrescence and blue/white persistent luminescence were studied using different spectroscopic techniques to obtain a quantified view on the storage and release of optical energy in these materials. The persistent luminescence emitter was identified as impurity Ti(3+) originating from the precursor materials used in the synthesis, and the energy storage for persistent luminescence was postulated to take place in oxygen vacancies within the aluminosilicate framework. Tenebrescence, on the other hand, was observed to function within the Na4(Cl,S) entities located in the cavities of the aluminosilicate framework. The mechanism of persistent luminescence and tenebrescence in hackmanite is presented for the first time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA