Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 14(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551622

RESUMO

Current chemoradiation therapy suffers from normal tissue toxicity. Thus, we are proposing incorporating gold nanoparticles (GNPs) and docetaxel (DTX), as they have shown very promising synergetic radiosensitization effects. Here, we explored the effect of a DTX prodrug encapsulated in lipid nanoparticles (LNPDTX-P) on GNP uptake in pancreatic cancer models in vitro and in vivo. For the in vitro experiment, a pancreatic cancer cell line, MIA PaCa-2, was cultured and dosed with 1 nM GNPs and 45 nM free DTX or an equivalent dose of LNPDTX-P. For the in vivo experiment, MIA PaCa-2 cells were implanted subcutaneously in NRG mice, and the mice were dosed with 2 mg/kg of GNPs and 6 mg/kg of DTX or an equivalent dose of LNPDTX-P. The results show that LNPDTX-P-treated tumour samples had double the amount GNPs compared to control samples, both in vitro and in vivo. The results are very promising, as LNPDTX-P have superior targeting of tumour tissues compared to free DTX due to their nanosize and their ability to be functionalized. Because of their minimal toxicity to normal tissues, both GNPs and LNPDTX-P could be ideal radiosensitization candidates in radiotherapy and would produce very promising synergistic therapeutic outcomes.

2.
J Control Release ; 349: 174-183, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780952

RESUMO

Advanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active. Here we explore the use of RNA interference (RNAi) to target a universally conserved region of all AR splice variants for cleavage and degradation, thereby eliminating protein level resistance mechanisms. To this end, we tested five siRNA sequences designed against exon 1 of the AR mRNA and identified several that induced potent knockdown of full-length and truncated variant ARs in the 22Rv1 human prostate cancer cell line. We then demonstrated that 2'O methyl modification of the top candidate siRNA (siARvm) enhanced AR and AR-V7 mRNA silencing potency in both 22Rv1 and LNCaP cells, which represent two different prostate cancer models. For downstream in vivo delivery, we formulated siARvm-LNPs and functionally validated these in vitro by demonstrating knockdown of AR and AR-V7 mRNA in prostate cancer cells and loss of AR-mediated transcriptional activation of the PSA gene in both cell lines following treatment. We also observed that siARvm-LNP induced cell viability inhibition was more potent compared to LNP containing siRNA targeting full-length AR mRNA (siARfl-LNP) in 22Rv1 cells as their proliferation is more dependent on AR splice variants than LNCaP and PC3 cells. The in vivo biodistribution of siARvm-LNPs was determined in 22Rv1 tumor-bearing mice by incorporating 14C-radiolabelled DSPC in LNP formulation, and we observed a 4.4% ID/g tumor accumulation following intravenous administration. Finally, treatment of 22Rv1 tumor bearing mice with siARvm-LNP resulted in significant tumor growth inhibition and survival benefit compared to siARfl-LNP or the siLUC-LNP control. To best of our knowledge, this is the first report demonstrating therapeutic effects of LNP-siRNA targeting AR splice variants in prostate cancer.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios , Androgênios , Animais , Linhagem Celular Tumoral , Humanos , Ligantes , Lipossomos , Masculino , Camundongos , Nanopartículas , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Distribuição Tecidual
3.
Mol Cancer Ther ; 17(12): 2767-2779, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30232145

RESUMO

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but extremely lethal malignancy that mainly impacts young women. SCCOHT is characterized by a diploid genome with loss of SMARCA4 and lack of SMARCA2 expression, two mutually exclusive ATPases of the SWI/SNF chromatin-remodeling complex. We and others have identified the histone methyltransferase EZH2 as a promising therapeutic target for SCCOHT, suggesting that SCCOHT cells depend on the alternation of epigenetic pathways for survival. In this study, we found that SCCOHT cells were more sensitive to pan-HDAC inhibitors compared with other ovarian cancer lines or immortalized cell lines tested. Pan-HDAC inhibitors, such as quisinostat, reversed the expression of a group of proteins that were deregulated in SCCOHT cells due to SMARCA4 loss, leading to growth arrest, apoptosis, and differentiation in vitro and suppressed tumor growth of xenografted tumors of SCCOHT cells. Moreover, combined treatment of HDAC inhibitors and EZH2 inhibitors at sublethal doses synergistically induced histone H3K27 acetylation and target gene expression, leading to rapid induction of apoptosis and growth suppression of SCCOHT cells and xenografted tumors. Therefore, our preclinical study highlighted the therapeutic potential of combined treatment of HDAC inhibitors with EZH2 catalytic inhibitors to treat SCCOHT.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Pequenas/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores de Histona Desacetilases/uso terapêutico , Hipercalcemia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Biocatálise/efeitos dos fármacos , Carcinoma de Células Pequenas/complicações , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Linhagem da Célula/efeitos dos fármacos , DNA Helicases/metabolismo , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Hipercalcemia/complicações , Camundongos , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteoma/metabolismo , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
J Pathol ; 242(3): 371-383, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28444909

RESUMO

Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT) is a rare but aggressive and untreatable malignancy affecting young women. We and others recently discovered that SMARCA4, a gene encoding the ATPase of the SWI/SNF chromatin-remodelling complex, is the only gene recurrently mutated in the majority of SCCOHT. The low somatic complexity of SCCOHT genomes and the prominent role of the SWI/SNF chromatin-remodelling complex in transcriptional control of genes suggest that SCCOHT cells may rely on epigenetic rewiring for oncogenic transformation. Herein, we report that approximately 80% (19/24) of SCCOHT tumour samples have strong expression of the histone methyltransferase EZH2 by immunohistochemistry, with the rest expressing variable amounts of EZH2. Re-expression of SMARCA4 suppressed the expression of EZH2 in SCCOHT cells. In comparison to other ovarian cell lines, SCCOHT cells displayed hypersensitivity to EZH2 shRNAs and two selective EZH2 inhibitors, GSK126 and EPZ-6438. EZH2 inhibitors induced cell cycle arrest, apoptosis, and cell differentiation in SCCOHT cells, along with the induction of genes involved in cell cycle regulation, apoptosis, and neuron-like differentiation. EZH2 inhibitors suppressed tumour growth and improved the survival of mice bearing SCCOHT xenografts. Therefore, our data suggest that loss of SMARCA4 creates a dependency on the catalytic activity of EZH2 in SCCOHT cells and that pharmacological inhibition of EZH2 is a promising therapeutic strategy for treating this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma de Células Pequenas/enzimologia , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Hipercalcemia/enzimologia , Neoplasias Ovarianas/enzimologia , Animais , Apoptose/fisiologia , Carcinoma Epitelial do Ovário , Pontos de Checagem do Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , DNA Helicases/deficiência , Regulação para Baixo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Histona Metiltransferases , Humanos , Transplante de Neoplasias , Neoplasias Epiteliais e Glandulares/enzimologia , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Transplante Heterólogo , Células Tumorais Cultivadas , Regulação para Cima
5.
Nat Commun ; 8: 14432, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28211448

RESUMO

G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Quadruplex G , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Sequência de Bases , Benzoxazinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , Quadruplex G/efeitos dos fármacos , Genoma Humano , Genótipo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Quinolonas/farmacologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Invest New Drugs ; 32(6): 1071-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25064374

RESUMO

Irinotecan is a water-soluble camptothecin derivative with clinical activity against colorectal and small cell lung cancers and is currently a standard of care therapeutic in the treatment of colorectal cancer in combination with 5-fluorouracil. One of the major clinical issues limiting the use of irinotecan is gastrointestinal toxicity manifested as life-threatening diarrhea which is reported in up to 45% of treated patients. The studies summarized here tested, in a rat model of irinotecan-associated gastro-intestinal toxicity, whether a lipid nanoparticle formulation of irinotecan, Irinophore C™, mitigated early-onset or late-onset diarrhea when given at doses equivalent to unformulated irinotecan that engenders both early- and late-onset diarrhea. Specifically, rats administered intravenously on two consecutive days with unformulated irinotecan at 170 mg/kg then 160 mg/kg experienced transient early-onset diarrhea after each administration and then experienced significant late-onset diarrhea peaking 4 days after treatment. Irinophore C™ given at the identical dose and schedule did not elicit either early- or late-onset diarrhea in any animals. When Irinophore C™ was combined with 5-fluorouracil there was also no early- or late-onset diarrhea observed. Histopathological analysis of the gastro-intestinal tract confirmed that the effects associated with irinotecan treatment were absent in rats given Irinophore C™ at the identical dose. Pharmacokinetic analysis demonstrated significantly higher systemic concentrations of irinotecan in rats given the nanoparticle formulation compared to those given unformulated irinotecan. These results demonstrate that the Irinophore C™ formulation is significantly less toxic than irinotecan, used either as a single agent or in combination with 5-fluorouracil, in a rat model of irinotecan-induced gastrointestinal toxicity.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/análogos & derivados , Diarreia/prevenção & controle , Nanopartículas/administração & dosagem , Animais , Antimetabólitos Antineoplásicos/administração & dosagem , Antineoplásicos Fitogênicos/efeitos adversos , Antineoplásicos Fitogênicos/sangue , Antineoplásicos Fitogênicos/farmacocinética , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Camptotecina/sangue , Camptotecina/farmacocinética , Colesterol/química , Colo/patologia , Diarreia/induzido quimicamente , Diarreia/patologia , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Fluoruracila/administração & dosagem , Intestino Delgado/patologia , Irinotecano , Lipossomos , Fosfatidilcolinas/química , Ratos Sprague-Dawley
7.
Nanomedicine (Lond) ; 9(3): 501-22, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24746193

RESUMO

Epithelial ovarian cancers are a group of at least five histologically and clinically distinct diseases, yet at this time patients with these different diseases are all treated with the same platinum and taxane-based chemotherapeutic regimen. With increased knowledge of histotype-specific differences that correlate with treatment responses and resistance, novel treatment strategies will be developed for each distinct disease. Type-specific or resistance-driven molecularly targeted agents will provide some specificity over traditional chemotherapies and it is argued here that nanoscaled drug delivery systems, in particular lipid-based formulations, have the potential to improve the delivery and specificity of pathway-specific drugs and broad-spectrum cytotoxic chemotherapeutics. An overview of the current understanding of ovarian cancers and the evolving clinical management of these diseases is provided. This overview is needed as it provides the context for understanding the current role of drug delivery systems in the treatment of ovarian cancer and the need to design formulations for treatment of clinically distinct forms of ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Lipídeos/química , Nanoestruturas/química , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/patologia , Animais , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Nanomedicina/métodos , RNA Interferente Pequeno/administração & dosagem
8.
Transl Oncogenomics ; 2: 85-97, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-23645983

RESUMO

Urokinase-type plasminogen activator (uPA) is associated with cancer recurrence where the most evidence comes from studies in breast cancer. According to the European Organization for Research and Treatment of Cancer, uPA is considered one of the most prominent biomarkers for cancer recurrence and therefore new agents are needed to inhibit it. Whether uPA is also expressed in pediatric cancers is yet unknown. If it is then uPA inhibitors might also help children with recurrent cancers. In this study, we addressed whether the integrin-linked kinase inhibitor (ILK), QLT0267, could suppress uPA. We previously showed that uPA expression is maximally inhibited when both the Akt and MAP kinase pathways were blocked which we anticipated can be achieved via QLT0267. In MDA-MB-231 breast cancer cells, QLT0267 blocked signaling through Akt and MAP kinase with a correlative decrease in uPA protein and mRNA, which corresponded to an inhibition of c-Jun phosphorylation. Consistent with these findings, cellular invasion was inhibited with either QLT0267 or with small interfering RNA against ILK. We then questioned whether uPA was commonly expressed in childhood sarcomas and if QLT0267 might be effective in this setting. We determined for the first time that uPA was highly expressed in rhabdomyosarcomas (RMS), but not Ewings sarcomas by screening cell lines (n = 31) and patient samples (n = 200) using Affymetrix microarrays. In alveolar RMS (ARMS) cell lines, QLT0267 blocked cell signaling, uPA production, invasion and ultimately survival. We concluded that QLT0267 blocks the production of uPA providing a new target for the management of recurrent cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA