Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 11(9): e0028422, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35972249

RESUMO

Here, we report the draft genome sequence of Calonectria pteridis, the causal agent of Calonectria leaf blight in eucalyptus plantations in Brazil. The 58,373,473-bp genome assembly consists of 1,167 scaffolds, with a GC content of 50.21%. These genomic data can contribute to future studies involving the biology, adaptability, and pathogenicity of C. pteridis.

2.
Plant Mol Biol ; 104(4-5): 339-357, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638297

RESUMO

Key Message A resistant E. grandis genotype showed a constitutive overexpression of genes related to resistance to myrtle rust caused by A. psidii. Abstract Myrtle rust caused by Austropuccinia psidii is considered one of the most important fungal diseases affecting Eucalyptus spp. plantations in Brazil. Although the selection and planting of resistant eucalypt genotypes have been the major strategies to manage the disease in Brazil, the molecular mechanisms involved in resistance are still unclear. In this study, we evaluated the gene expression profile of two contrasting Eucalyptus grandis genotypes in resistance level to rust by RNA-Seq. The two genotypes showed a very different background gene expression level even without A. psidii infection. The resistant genotype had a constitutive overexpression of a large number of protein-coding genes compared to the susceptible genotype. These genes were mainly associated with signal transduction, photosynthesis, regulation and response to salicylic acid (SA), and protein kinase leucine-rich receptors (PK-LRR). PK-LRR and SA mediated disease resistance are well known to be effective against obligate biotroph pathogens, such as A. psidii. In addition, at 24 h after infection, the susceptible genotype was able to activate some response, however, several resistance-related proteins had their expression level reduced with A. psidii infection. Here, we present the first analysis of E. grandis genotypes transcriptomes infected by A. psidii and it reveals a constitutive overexpression of several resistance-related genes in the resistant genotype compared to the susceptible one. Our findings have the potential to be used as candidate molecular markers for resistance to myrtle rust.


Assuntos
Basidiomycota/patogenicidade , Eucalyptus/genética , Eucalyptus/microbiologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Brasil , Resistência à Doença/genética , Eucalyptus/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Família Multigênica , Fotossíntese/genética , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Ácido Salicílico/metabolismo
3.
Fungal Genet Biol ; 137: 103332, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926322

RESUMO

Ceratocystis fimbriata is an important plant pathogen known to cause Ceratocystis Wilt (CW), a prevalent fungal disease known to affect Eucalyptus spp. plantations in Brazil. To better understand the molecular mechanisms related to pathogenicity in eucalyptus, we generated a high-quality assembly and annotation of the Ce. fimbriata LPF1912 isolate (LPF1912) genome, as well as the first transcriptome of LPF1912 from 16 eucalyptus clones at three infection incubation periods (12, 18, and 24 h). The LPF1912 genome assembly contains 805 scaffolds, totaling 31.8 Mb, with 43% of the genome estimated to be coding sequence comprised of 7,390 protein-coding genes of which 626 (8.5%) were classified as secreted proteins, 120 ribosomal RNAs, and 532 transfer RNAs. Comparative genomic analysis among three eucalyptus fungal pathogens (Ce. fimbriata, Ce. eucalypticola, and Calonectria pseudoreteaudii), showed high similarity in the proteome (21.81%) and secretome (52.01%) of LPF1912 and Ce. eucalypticola. GO annotation of pathogenicity-related genes of LPF1912 and Ce. eucalypticola, revealed enrichment in cell wall degrading enzymes (CWDEs), and lipid/cutin metabolism for Ca. pseudoreteaudii. Additionally, a transcriptome analysis between resistant and susceptible eucalyptus clones to CW infection indicated that a majority (11) of LPF1912 differentially expressed genes had GO terms associated with enzymatic functions, such as the polygalacturonase gene family, confirming the crucial role of CWDEs for Ce. fimbriata pathogenicity. Finally, our genomic and transcriptomic analysis approach provides a better understanding of the mechanisms involved in Ce. fimbriata pathogenesis, as well as a framework for further studies.


Assuntos
Ceratocystis/genética , Hypocreales/genética , Ascomicetos/genética , Ceratocystis/metabolismo , Eucalyptus/microbiologia , Perfilação da Expressão Gênica/métodos , Variação Genética/genética , Genômica/métodos , Filogenia , Doenças das Plantas/microbiologia , Proteoma/genética , Transcriptoma/genética , Virulência/genética
4.
Genet Mol Biol ; 42(2): 425-435, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31259365

RESUMO

Titanium dioxide nanoparticles (TiO2NPs) are widely used and may impact the environment. Thus, this study used a high concentration of TiO2NP (1000 mg/L) to verify the defense mechanisms triggered by a plant system - an indicator of toxicity. Furthermore, this study aimed at completely characterizing TiO2NP suspensions to elucidate their toxic behavior. TiO2NPs were taken up by meristematic cells of Allium cepa, leading to slight inhibition of seed germination and root growth. However, severe cellular and DNA damages were observed in a concentration-dependent manner (10, 100, and 1000 mg/L). For this reason, we used the highest tested concentration (1000 mg/L) to verify if the plant cells developed defense mechanisms against the TiO2NPs and evaluated other evidences of TiO2NP genotoxicity. Nucleolar alterations and plant defense responses (i.e., increased lytic vacuoles, oil bodies and NP phase change) were observed in meristematic cells exposed to TiO2NP at 1000 mg/L. In summary, TiO2NPs can damage the genetic material of plants; however, plants displayed defense mechanisms against the deleterious effects of these NPs. In addition, A. cepa was found to be a suitable test system to evaluate the cyto- and genotoxicity of NPs.

5.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000543

RESUMO

Here, we report the annotated draft genome sequence of Xanthomonas axonopodis pv. eucalyptorum pathotype strain LPF602 (synonym Xanthomonas axonopodis BSC45a), isolated from eucalypt leaves showing bacterial blight symptoms in Brazil. The availability of these genomic data will help improve the understanding of the evolution and molecular mechanisms involved in the pathogenesis of this microorganism.

6.
Artigo em Inglês | MEDLINE | ID: mdl-30714036

RESUMO

Here, we present a draft genome sequence of the type strain IBSBF 435 of Erwinia psidii (Enterobacteriaceae), a phytopathogen that causes bacterial blight on guava (Psidium guava) and dieback and wilt on eucalypt (Eucalyptus spp.), both of which are important emerging diseases.

7.
An Acad Bras Cienc ; 87(1): 519-28, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25714076

RESUMO

Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii and Pueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloides plants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity of N. wightii and P. phaseoloides, no effects on biomass accumulation were observed in response to light.


Assuntos
Pueraria/crescimento & desenvolvimento , Luz Solar , Adaptação Fisiológica , Biomassa , Fabaceae/classificação , Fabaceae/crescimento & desenvolvimento , Fabaceae/fisiologia , Fenótipo , Fotossíntese/fisiologia , Pueraria/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA