Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biodivers Data J ; 12: e113301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38314123

RESUMO

Soil arthropod diversity contributes to a high proportion of the total biodiversity on Earth. However, most soil arthropods are still undescribed, hindering our understanding of soil functioning and global biodiversity estimations. Inventorying soil arthropods using conventional taxonomical approaches is particularly difficult and costly due to the great species richness, abundance and local-scale heterogeneity of mesofauna communities and the poor taxonomic background knowledge of most lineages. To alleviate this situation, we have designed and implemented a molecular barcoding framework adapted to soil fauna. This pipeline includes different steps, starting with a morphology-based selection of specimens which are imaged. Then, DNA is extracted non-destructively. Both images and voucher specimens are used to assign a taxonomic identification, based on morphology that is further checked for consistency with molecular information. Using this procedure, we studied 239 specimens of mites from the Canary Islands including representatives of Mesostigmata, Sarcoptiformes and Trombidiformes, of which we recovered barcode sequences for 168 specimens that were morphologically identified to 49 species, with nine specimens that could only be identified at the genus or family levels. Multiple species delimitation analyses were run to compare molecular delimitations with morphological identifications, including ASAP, mlPTP, BINs and 3% and 8% genetic distance thresholds. Additionally, a species-level search was carried out at the Biodiversity Databank of the Canary Islands (BIOTA) to evaluate the number of species in our dataset that were not previously recorded in the archipelago. In parallel, a sequence-level search of our sequences was performed against BOLD Systems. Our results reveal that multiple morphologically identified species correspond to different molecular lineages, which points to significant levels of unknown cryptic diversity within the archipelago. In addition, we evidenced that multiple species in our dataset constituted new records for the Canary Islands fauna and that the information for these lineages within online genetic repositories is very incomplete. Our study represents the first systematic effort to catalogue the soil arthropod mesofauna of the Canary Islands and establishes the basis for the Canary Islands Soil Biodiversity barcode database. This resource will constitute a step forward in the knowledge of these arthropods in a region of special interest.

2.
Zootaxa ; 5383(1): 67-74, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38221260

RESUMO

The Canary Islands endemic species Aphaenogaster hesperia Santschi, 1911 was described based solely on two workers captured in a north-western coastal area of Tenerife (Canary Islands) in 1902 and 1903. The species has not been recorded in the last 100 years and only information on its type locality is known. This species, belonging to the crocea group, has been recently rediscovered in a new site within a pine forest at 950 m a.s.l. The new area is a very different habitat, revealing a lack of ecological knowledge of the species, which may have caused the species to have remained unnoticed for more than 100 years. Novel distributional and morphological data are provided.


Assuntos
Formigas , Pinus , Animais , Espanha , Ecossistema , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA