Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37811828

RESUMO

Metal-reducing bacteria have adapted the ability to respire extracellular solid surfaces instead of soluble oxidants. This process requires an electron transport pathway that spans from the inner membrane, across the periplasm, through the outer membrane, and to an external surface. Multiheme cytochromes are the primary machinery for moving electrons through this pathway. Recent studies show that the chiral-induced spin selectivity (CISS) effect is observable in some of these proteins extracted from the model metal-reducing bacteria, Shewanella oneidensis MR-1. It was hypothesized that the CISS effect facilitates efficient electron transport in these proteins by coupling electron velocity to spin, thus reducing the probability of backscattering. However, these studies focused exclusively on the cell surface electron conduits, and thus, CISS has not been investigated in upstream electron transfer components such as the membrane-associated MtrA, or periplasmic proteins such as small tetraheme cytochrome (STC). By using conductive probe atomic force microscopy measurements of protein monolayers adsorbed onto ferromagnetic substrates, we show that electron transport is spin selective in both MtrA and STC. Moreover, we have determined the spin polarization of MtrA to be ∼77% and STC to be ∼35%. This disparity in spin polarizations could indicate that spin selectivity is length dependent in heme proteins, given that MtrA is approximately two times longer than STC. Most significantly, our study indicates that spin-dependent interactions affect the entire extracellular electron transport pathway.


Assuntos
Elétrons , Periplasma , Transporte de Elétrons , Oxirredução , Periplasma/metabolismo , Metais , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
J Phys Chem B ; 127(11): 2344-2350, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36888909

RESUMO

The adsorption of oxidatively damaged DNA onto ferromagnetic substrates was investigated. Both confocal fluorescence microscopy and quartz crystal microbalance methods show that the adsorption rate and the coverage depend on the magnetization direction of the substrate and the position of the damage site on the DNA relative to the substrate. SQUID magnetometry measurements show that the subsequent magnetic susceptibility of the DNA-coated ferromagnetic film depends on the direction of the magnetic field that was applied to the ferromagnetic film as the molecules were adsorbed. This study reveals that (i) the spin and charge polarization in DNA molecules is changed significantly by oxidative damage in the G bases and (ii) the rate of adsorption on a ferromagnet, as a function of the direction of the magnetic dipole of the surface, can be used as an assay to detect oxidative damage in the DNA.


Assuntos
DNA , Imãs , Adsorção , DNA/química , Microscopia de Fluorescência , Técnicas de Microbalança de Cristal de Quartzo
3.
Sci Adv ; 8(32): eabq2727, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35947656

RESUMO

We describe the spin polarization-induced chirogenic electropolymerization of achiral 2-vinylpyridine, which forms a layer of enantioenhanced isotactic polymer on the electrode. The product formed is enantioenriched in asymmetric carbon polymer. To confirm the chirality of the polymer film formed on the electrode, we also measured its electron spin polarization properties as a function of its thickness. Two methods were used: First, spin polarization was measured by applying magnetic contact atomic force microscopy, and second, magnetoresistance was assessed in a sandwich-like four-point contact structure. We observed high spin-selective electron transmission, even for a layer thickness of 120 nm. A correlation exists between the change in the circular dichroism signal and the change in the spin polarization, as a function of thickness. The spin-filtering efficiency increases with temperature.

4.
Proc Natl Acad Sci U S A ; 119(30): e2202650119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858429

RESUMO

Controlled reduction of oxygen is important for developing clean energy technologies, such as fuel cells, and is vital to the existence of aerobic organisms. The process starts with oxygen in a triplet ground state and ends with products that are all in singlet states. Hence, spin constraints in the oxygen reduction must be considered. Here, we show that the electron transfer efficiency from chiral electrodes to oxygen (oxygen reduction reaction) is enhanced over that from achiral electrodes. We demonstrate lower overpotentials and higher current densities for chiral catalysts versus achiral ones. This finding holds even for electrodes composed of heavy metals with large spin-orbit coupling. The effect results from the spin selectivity conferred on the electron current by the chiral assemblies, the chiral-induced spin selectivity effect.


Assuntos
Elétrons , Oxigênio , Catálise , Eletrodos , Transporte de Elétrons , Oxirredução , Oxigênio/química
5.
Adv Sci (Weinh) ; 8(18): e2101773, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34292678

RESUMO

It is established that electron transmission through chiral molecules depends on the electron's spin. This phenomenon, termed the chiral-induced spin selectivity (CISS), effect has been observed in chiral molecules, supramolecular structures, polymers, and metal-organic films. Which spin is preferred in the transmission depends on the handedness of the system and the tunneling direction of the electrons. Molecular motors based on overcrowded alkenes show multiple inversions of helical chirality under light irradiation and thermal relaxation. The authors found here multistate switching of spin selectivity in electron transfer through first generation molecular motors based on the four accessible distinct helical configurations, measured by magnetic-conductive atomic force microscopy. It is shown that the helical state dictates the molecular organization on the surface. The efficient spin polarization observed in the photostationary state of the right-handed motor coupled with the modulation of spin selectivity through the controlled sequence of helical states, opens opportunities to tune spin selectivity on-demand with high spatio-temporal precision. An energetic analysis correlates the spin injection barrier with the extent of spin polarization.

6.
J Phys Chem B ; 123(44): 9443-9448, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31609607

RESUMO

The effect of an electric field on the adsorption of oligopeptides and DNA on a ferromagnetic substrate magnetized perpendicular to the surface was investigated. The direction of the magnetic moment of the substrate defines different adsorption rates for different enantiomers, and the direction of the electric field, perpendicular to the surface, defines different adsorption rates depending on the direction of the dipole moment of the adsorbed molecules.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 191: 221-225, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29040927

RESUMO

Hollow fluorescent carbon nanoparticles (HFCNs) have been combined with gold nanoparticles (AuNPs) to produce a special catalyst. The catalytic properties of HFCNs and AuNPs were exploited to conceptualize the new catalytic functionality. The AuNP-embedded-HFCNs produced in situ were found to massively enhance the rate of reduction of 4-nitrophenol (a model reaction) in presence of sodium borohydride. Comparison with functioning of other nanoparticulate catalysts on the same reaction proved our product to be an extremely efficient catalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA