Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(29): 15896-15905, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440690

RESUMO

Finding stable analogues of three-dimensional (3D) lead halide perovskites has motivated the exploration of an ever-expanding repertoire of two-dimensional (2D) counterparts. However, the bandgap and exciton binding energy in these 2D systems are generally considerably higher than those in 3D analogues due to size and dielectric confinement. Such quantum confinements are most prominently manifested in the extreme 2D realization in (A)mPbI4 (m = 1 or 2) series of compounds with a single inorganic layer repeat unit. Here, we explore a new A-site cation, 4,4'-azopyridine (APD), whose size and hydrogen bonding properties endow the corresponding (APD)PbI4 2D compound with the lowest bandgap and exciton binding energy of all such compounds, 2.19 eV and 48 meV, respectively. (APD)PbI4 presents the first example of the ideal Pb-I-Pb bond angle of 180°, maximizing the valence and conduction bandwidths and minimizing the electron and hole effective masses. These effects coupled with a significant increase in the dielectric constant provide an explanation for the unique bandgap and exciton binding energies in this system. Our theoretical results further reveal that the requirement of optimizing the hydrogen bonding interactions between the organic and the inorganic units provides the driving force for achieving the structural uniqueness and the associated optoelectronic properties in this system. Our preliminary investigations in characterizing photovoltaic solar cells in the presence of APD show encouraging improvements in performances and stability.

2.
Nanotechnology ; 34(2)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36191474

RESUMO

Metal halide perovskites possess exciting optoelectronic properties and are being used for various applications, including fluorescent anticounterfeiting security tags. The existing anticounterfeitings based on perovskites have a reversible transition that does not allow to know whether the information is tampered or compromised. In this work, we developed fluorescent anticounterfeiting security tags using micropatterned metal halide perovskite nanocrystals. The micro features were created by spray coating of stabilized methylammonium lead tribromide (MAPbBr3) nanocrystals (NCs) in polystyrene (PS) solution, which has a proper wettability to various rigid and flexible substrates. The PS provides additional optical and structural stability to the MAPbBr3NCs against polar solvents. By combining stable and unstable MAPbBr3nanocrystals, we created a double-layer fluorescent anticounterfeiting security tag, and the information is hidden under both ambient light and UV illumination. An irreversible decryption is possible after treating the security tags with particular solvents, thus tampering of the security tag is easily detectable.

3.
Langmuir ; 38(40): 12103-12117, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121436

RESUMO

Lead halide perovskites (LHP) are of great interest for their optoelectronic properties and photovoltaic applications. Various heterostructures are created in these materials to achieve favorable optical properties and improved stability at the interfaces during the fabrication of devices. Such heterostructures are often assumed to be formed based on the reactivity of precursors and are not directly probed. In this Feature Article, we report how various strategies have been employed in LHP thin films and nanocrystals (NCs) that generate heterostructures to boost their stability and photovoltaic (PV) efficiencies and how variable energy photoelectron spectroscopy (VEPES) can probe the chemical composition variation in heterostructured materials and interfaces. We specifically discussed the internal heterostructures of LHP NCs generated due to the surface chemistry and postsynthesis anion exchange followed by a detailed discussion of the heterostructures induced by the chemical composition (anion, cation, and degradation) of LHP thin films. The difficulties in determining heterostructures as well as the potential scope of the application of VEPES in unwrapping heterostructures in diverse materials are also discussed.

4.
Nanoscale ; 12(40): 20840-20848, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33043328

RESUMO

Anion exchange of CsPbX3 nanocrystals (NCs) is an easy pathway to tune the bandgap over the entire visible region. Even the mixing of pre-synthesized CsPbBr3 and CsPbI3 NCs at room temperature leads to the formation of mixed halide CsPbBr3-xIx NCs. Understanding the reaction mechanism and the kinetics of interparticle mixing is essential for fundamental aspects and device applications. Here, we probed the kinetics of ion migration through time-dependent steady-state photoluminescence (PL) spectroscopy. We found three primary PL peaks after the mixing of NCs-bromide side peak, iodide side peak, and a new peak that emerges during the reaction. The reaction follows first-order kinetics and the activation energy is 0.75 ± 0.05 eV. We propose that the free oleylammonium halides which are in dynamic equilibrium with the NCs, eventually promote interparticle mixing that follows the anion migration from the surface to the core of the nanocrystal, which is the rate-limiting step. Overall, the inherent reaction rate between the halide anions and the nanocrystals governs the reaction kinetics.

5.
Beilstein J Nanotechnol ; 11: 814-820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32551206

RESUMO

The influence of single-layer graphene on top of a SiO2/Si surface on the orientation of nonplanar lead phthalocyanine (PbPc) molecules is studied using two-dimensional grazing incidence X-ray diffraction. The studies indicate the formation of a mixture of polymorphs, i.e., monoclinic and triclinic forms of PbPc with face-on (lying down) and edge-on (standing up) PbPc orientations, respectively. The formation of monoclinic fractions is attributed to the presence of the graphene layer directing the π interactions between the highly delocalized macrocycles. The competing interfacial van der Waals forces and molecule-molecule interactions lead to the formation of a small fraction of triclinic moieties. The nanoscale electrical characterization of the thin PbPc layer on graphene by means of conducting atomic force microscopy shows enhanced vertical conductance with interconnected conducting domains consisting of ordered monoclinic crystallites through which the charge transfer occurs via tunneling. These results show the importance of a templating layer to induce the formation of a required phase of PbPc suitable for specific device applications.

6.
Phys Chem Chem Phys ; 21(41): 22955-22965, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31599288

RESUMO

The structural organization and its effect on conducting pathways in lead phthalocyanine (PbPc) thin films, a nonplanar phthalocyanine, deposited on Si and highly oriented pyrolytic graphite (HOPG) substrates in the presence of iodine and ammonia vapors are presented. Two-dimensional grazing incidence X-ray diffraction studies reveal that the crystalline ordering in pristine PbPc films on Si and HOPG substrates undergoes a drastic molecular rearrangement and surface reconstruction upon iodine doping. The structural rearrangement leads to morphological changes and higher surface roughness in iodine doped PbPc (I-PbPc) films. The obvious enhancement in the current values of I-PbPc is attributed to the introduction of holes as charge carriers. Nanoscale current mapping reveals the presence of percolation pathways in I-PbPc films, on both Si and HOPG substrates, being responsible for the observed high conductance in contrast to the isolated conducting domains in the pristine PbPc system. The broad distribution of current values across various conducting domains on Si is attributed to a mixture of crystalline phases and disordered fractions of I-PbPc, while the narrow distribution of current values observed in the case of HOPG arises from the majorly disordered PbPc molecules. These films also show enhanced sensitivity towards ammonia that is almost four times higher in magnitude than for pristine PbPc films. The current maps show that the adsorption of ammonia molecules disrupts the iodine percolation pathways, thereby imposing a detrimental effect on the conductivity of the PbPc films.

7.
J Phys Chem Lett ; 8(20): 4988-4994, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28937765

RESUMO

Optoelectronic properties of CsPbBr3 perovskite nanocubes (NCs) depend strongly on the interaction of the organic passivating molecules with the inorganic crystal. To understand this interaction, we employed a combination of synchrotron-based X-ray photoelectron spectroscopy (XPS), nuclear magnetic resonance (NMR) spectroscopy, and first-principles density functional theory (DFT)-based calculations. Variable energy XPS elucidated the internal structure of the inorganic part in a layer-by-layer fashion, whereas NMR characterized the organic ligands. Our experimental results confirm that oleylammonium ions act as capping ligands by substituting Cs+ ions from the surface of CsPbBr3 NCs. DFT calculations shows that the substitution mechanism does not require much energy for surface reconstruction and, in contrast, stabilizes the nanocrystal by the formation of three hydrogen bonds between the -NH3+ moiety of oleylammonium and surrounding Br- on the surface of NCs. This substitution mechanism and its origin are in stark contrast to the usual adsorption of organic ligands on the surface of typical NCs.

8.
Nanoscale ; 7(29): 12266-83, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26147328

RESUMO

Nanostructured materials offer key advantages for third-generation photovoltaics, such as the ability to achieve high optical absorption together with enhanced charge carrier collection using low cost components. However, the extensive interfacial areas in nanostructured photovoltaic devices can cause high recombination rates and a high density of surface electronic states. In this feature article, we provide a brief review of some nanostructured photovoltaic technologies including dye-sensitized, quantum dot sensitized and colloidal quantum dot solar cells. We then introduce the technique of atomic layer deposition (ALD), which is a vapor phase deposition method using a sequence of self-limiting surface reaction steps to grow thin, uniform and conformal films. We discuss how ALD has established itself as a promising tool for addressing different aspects of nanostructured photovoltaics. Examples include the use of ALD to synthesize absorber materials for both quantum dot and plasmonic solar cells, to grow barrier layers for dye and quantum dot sensitized solar cells, and to infiltrate coatings into colloidal quantum dot solar cell to improve charge carrier mobilities as well as stability. We also provide an example of monolayer surface modification in which adsorbed ligand molecules on quantum dots are used to tune the band structure of colloidal quantum dot solar cells for improved charge collection. Finally, we comment on the present challenges and future outlook of the use of ALD for nanostructured photovoltaics.

9.
J Phys Chem B ; 118(9): 2559-67, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-24490898

RESUMO

We study the phenomenon of evaporation-driven self-assembly of a colloid suspension of silica microspheres in the interior region and away from the rim of the droplet on a glass plate. In view of the importance of achieving a large-area, monolayer assembly, we first realize a suitable choice of experimental conditions, minimizing the influence of many other competing phenomena that usually complicate the understanding of fundamental concepts of such self-assembly processes in the interior region of a drying droplet. Under these simplifying conditions to bring out essential aspects, our experiments unveil an interesting competition between ordering and compaction in such drying systems in analogy to an impending glass transition. We establish a re-entrant behavior in the order-disorder phase diagram as a function of the particle density, such that there is an optimal range of the particle density to realize the long-range ordering. The results are explained with the help of simulations and phenomenological theory.

10.
J Am Chem Soc ; 135(2): 877-85, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23249280

RESUMO

Photon management in solar cells is an important criterion as it enables the capture of incident visible and infrared photons in an efficient way. Highly luminescent CdSeS quantum dots (QDs) with a diameter of 4.5 nm were prepared with a gradient structure that allows tuning of absorption and emission bands over the entire visible region without varying the particle size. These crystalline ternary cadmium chalcogenides were deposited within a mesoscopic TiO(2) film by electrophoretic deposition with a sequentially-layered architecture. This approach enabled us to design tandem layers of CdSeS QDs of varying band gap within the photoactive anode of a QD solar cell (QDSC). An increase in power conversion efficiency of 1.97-2.81% with decreasing band gap was observed for single-layer CdSeS, thus indicating varying degrees of photon harvesting. In two- and three-layered tandem QDSCs, we observed maximum power conversion efficiencies of 3.2 and 3.0%, respectively. These efficiencies are greater than the values obtained for the three individually layered photoanodes. The synergy of using tandem layers of the ternary semiconductor CdSeS in QDSCs was systematically evaluated using transient spectroscopy and photoelectrochemistry.

11.
J Phys Chem Lett ; 4(5): 722-9, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26281925

RESUMO

Ternary metal chalcogenides such as CuInS2 offer new opportunities to design quantum dot solar cells (QDSC). Chemically synthesized CuInS2 quantum dots (particle diameter, 2.6 nm) have been successfully deposited within the mesoscopic TiO2 film using electrophoretic deposition (150 V cm(-1) dc field). The primary photoinduced process of electron injection from excited CuInS2 into TiO2 occurs with a rate constant of 5.75 × 10(11) s(-1). The TiO2/CuInS2 films are photoactive and produce anodic photocurrent with a power conversion efficiency of 1.14%. Capping the TiO2/CuInS2 film with a CdS layer decreases the interfacial charge recombination and thus offers further improvement in the power conversion efficiency (3.91%). The synergy of using CdS as a passivation layer in the composite film is also evident from the increased external quantum efficiency of the electrode in the red region where only CuInS2 absorbs the incident light.

12.
J Phys Chem Lett ; 4(11): 1843-9, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-26283119

RESUMO

We report a cobalt pyrite (cobalt disulfide, CoS2) thin film on glass as a robust, high-performance, low-cost, earth-abundant counter electrode for liquid-junction quantum dot-sensitized solar cells (QDSSCs) that employ the aqueous sulfide/polysulfide (S(2-)/Sn(2-)) redox electrolyte as the hole-transporting medium. The metallic CoS2 thin film electrode is prepared via thermal sulfidation of a cobalt film deposited on glass and has been characterized by powder X-ray diffraction and electron microscopy. Using the CoS2 counter electrode, CdS/CdSe-sensitized QDSSCs display improved short-circuit photocurrent density and fill factor, achieving solar light-to-electricity conversion efficiencies as high as 4.16%, with an average efficiency improvement of 54 (±14)% over equivalent devices assembled with a traditional platinum counter electrode. Electrochemical measurements verify that CoS2 shows high electrocatalytic activity toward polysulfide reduction, rationalizing the improved QDSSC performance. CoS2 is also less susceptible to poisoning by the sulfide/polysulfide electrolyte, a problem that plagues platinum electrodes in this application; furthermore, CoS2 exhibits excellent stability in sulfide/polysulfide electrolyte, resulting in highly reproducible performance.

13.
ACS Nano ; 6(6): 5718-26, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22658983

RESUMO

Manipulation of energy and electron transfer processes in a light harvesting assembly is an important criterion to mimic natural photosynthesis. We have now succeeded in sequentially assembling CdSe quantum dot (QD) and squaraine dye (SQSH) on TiO(2) film and couple energy and electron transfer processes to generate photocurrent in a hybrid solar cell. When attached separately, both CdSe QDs and SQSH inject electrons into TiO(2) under visible-near-IR irradiation. However, CdSe QD if linked to TiO(2) with SQSH linker participates in an energy transfer process. The hybrid solar cells prepared with squaraine dye as a linker between CdSe QD and TiO(2) exhibited power conversion efficiency of 3.65% and good stability during illumination with global AM 1.5 solar condition. Transient absorption spectroscopy measurements provided further insight into the energy transfer between excited CdSe QD and SQSH (rate constant of 6.7 × 10(10) s(-1)) and interfacial electron transfer between excited SQSH and TiO(2) (rate constant of 1.2 × 10(11) s(-1)). The synergy of covalently linked semiconductor quantum dots and near-IR absorbing squaraine dye provides new opportunities to harvest photons from selective regions of the solar spectrum in an efficient manner.


Assuntos
Compostos de Cádmio/química , Fontes de Energia Elétrica , Nanopartículas/química , Nanopartículas/ultraestrutura , Compostos de Selênio/química , Energia Solar , Titânio/química , Compostos de Cádmio/efeitos da radiação , Transporte de Elétrons/efeitos da radiação , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Tamanho da Partícula , Compostos de Selênio/efeitos da radiação
14.
J Am Chem Soc ; 134(5): 2508-11, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22280479

RESUMO

To make Quantum Dot Sensitized Solar Cells (QDSC) competitive, it is necessary to achieve power conversion efficiencies comparable to other emerging solar cell technologies. By employing Mn(2+) doping of CdS, we have now succeeded in significantly improving QDSC performance. QDSC constructed with Mn-doped-CdS/CdSe deposited on mesoscopic TiO(2) film as photoanode, Cu(2)S/Graphene Oxide composite electrode, and sulfide/polysulfide electrolyte deliver power conversion efficiency of 5.4%.


Assuntos
Compostos de Cádmio/química , Manganês/química , Pontos Quânticos , Compostos de Selênio/química , Energia Solar , Sulfetos/química , Titânio/química
15.
Chem Commun (Camb) ; 46(16): 2853-5, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20369205

RESUMO

This communication highlights unstable blue-green emitting Cu doped ZnSe nanocrystals stabilized by diluting the surface Se with a calculated amount of S.

16.
J Am Chem Soc ; 131(2): 470-7, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19140789

RESUMO

In this paper, we report on the growth and characterization of quantum dot-quantum well nanostructures with photoluminescence (PL) that is tunable over the visible range. The material exhibits a PL efficiency as high as approximately 60% and is prepared by reacting ZnS nanocrystals in turn with precursors for CdSe and ZnS in an attempt to form a simple "ZnS/CdSe/ZnS quantum-well structure". Through the use of synchrotron radiation-based photoelectron spectroscopy in conjunction with detailed overall compositional analysis and correlation with the size of the final composite nanostructure, the internal structure of the composite nanocrystals is shown to consist of a graded alloy core whose composition gradually changes from ZnS at the very center to CdSe at the onset of a CdSe layer. The outer shell is ZnS with a sharp interface, probably reflecting the relative thermodynamic stabilities of the parent binary phases. These contrasting aspects of the internal structure are discussed in terms of the various reactivities and are shown to be crucial for understanding the optical properties of such complex heterostructured nanomaterials.


Assuntos
Compostos de Cádmio/química , Medições Luminescentes/métodos , Nanopartículas/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Difração de Raios X
17.
Phys Rev Lett ; 98(25): 255501, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678035

RESUMO

We investigate the mechanism of growth of nanocrystals from solution using the case of ZnO. Spanning a wide range of values of the parameters, such as the temperature and the reactant concentration that control the growth, our results establish a qualitative departure from the widely accepted diffusion controlled coarsening (Ostwald ripening) process quantified in terms of the Lifshitz-Slyozov-Wagner theory. Further, we show that these experimental observations can be qualitatively and quantitatively understood within a growth mechanism that is intermediate between the two well-defined limits of diffusion control and kinetic control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA