Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38506185

RESUMO

Muscle synergies as functional low-dimensional building blocks of the neuromotor system regulate the activation patterns of muscle groups in a modular structure during locomotion. The purpose of the current study was to explore how older adults organize locomotor muscle synergies to counteract unpredictable and predictable gait perturbations during the perturbed steps and the recovery steps. Sixty-three healthy older adults (71.2±5.2 years) participated in the study. Mediolateral and anteroposterior unpredictable and predictable perturbations during walking were introduced using a treadmill. Muscle synergies were extracted from the electromyographic activity of 13 lower limb muscles using Gaussian non-negative matrix factorization. The four basic synergies responsible for unperturbed walking (weight acceptance, propulsion, early swing and late swing) were preserved in all applied gait perturbations, yet their temporal recruitment and muscle contribution in each synergy were modified (P<0.05). These modifications were observed for up to four recovery steps and were more pronounced (P<0.05) following unpredictable perturbations. The recruitment of the four basic walking synergies in the perturbed and recovery gait cycles indicates a robust neuromotor control of locomotion by using activation patterns of a few and well-known muscle synergies with specific adjustments within the synergies. The selection of pre-existing muscle synergies while adjusting the time of their recruitment during challenging locomotor conditions may improve the effectiveness to deal with perturbations and promote the transfer of adaptation between different kinds of perturbations.


Assuntos
Marcha , Caminhada , Eletromiografia , Caminhada/fisiologia , Locomoção , Músculo Esquelético/fisiologia , Fenômenos Biomecânicos
2.
Trends Genet ; 40(1): 20-23, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37926636

RESUMO

Proprioception - the sense of body position in space - is intimately linked to motor control. Here, we briefly review the current knowledge of the proprioceptive system and how advances in the genetic characterisation of proprioceptive sensory neurons in mice promise to dissect its role in health and disease.


Assuntos
Propriocepção , Células Receptoras Sensoriais , Camundongos , Animais , Propriocepção/fisiologia , Células Receptoras Sensoriais/fisiologia
3.
Front Physiol ; 14: 1185556, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37378078

RESUMO

Elite athletes are regularly exposed to high and repetitive mechanical stresses and impacts, resulting in high injury rates. The consequences of injury can range from time lost from training and competition to chronic physical and psychological burden, with no guarantee that the athlete will return to preinjury levels of sport activity and performance. Prominent predictors include load management and previous injury, highlighting the importance of the postinjury period for effective return to sport (RTS). Currently, there is conflicting information on how to choose and assess the best reentry strategy. Treating RTS as a continuum, with controlled progression of training load and complexity, seems to provide benefits in this process. Furthermore, objectivity has been identified as a critical factor in improving the effectiveness of RTS. We propose that assessments derived from biomechanical measurements in functional settings can provide the objectivity needed for regular biofeedback cycles. These cycles should aim to identify weaknesses, customize the load, and inform on the status of RTS progress. This approach emphasizes individualization as the primary determinant of RTS and provides a solid foundation for achieving it.

4.
Elife ; 122023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37159500

RESUMO

Background: Postoperative knee instability is one of the major reasons accounting for unsatisfactory outcomes, as well as a major failure mechanism leading to total knee arthroplasty (TKA) revision. Nevertheless, subjective knee instability is not well defined clinically, plausibly because the relationships between instability and implant kinematics during functional activities of daily living remain unclear. Although muscles play a critical role in supporting the dynamic stability of the knee joint, the influence of joint instability on muscle synergy patterns is poorly understood. Therefore, this study aimed to understand the impact of self-reported joint instability on tibiofemoral kinematics and muscle synergy patterns after TKA during functional gait activities of daily living. Methods: Tibiofemoral kinematics and muscle synergy patterns were examined during level walking, downhill walking, and stair descent in eight self-reported unstable knees after TKA (3M:5F, 68.9 ± 8.3 years, body mass index [BMI] 26.1 ± 3.2 kg/m2, 31.9 ± 20.4 months postoperatively), and compared against 10 stable TKA knees (7M:3F, 62.6 ± 6.8 years, 33.9 ± 8.5 months postoperatively, BMI 29.4 ± 4.8 kg/m2). For each knee joint, clinical assessments of postoperative outcome were performed, while joint kinematics were evaluated using moving video-fluoroscopy, and muscle synergy patterns were recorded using electromyography. Results: Our results reveal that average condylar A-P translations, rotations, as well as their ranges of motion were comparable between stable and unstable groups. However, the unstable group exhibited more heterogeneous muscle synergy patterns and prolonged activation of knee flexors compared to the stable group. In addition, subjects who reported instability events during measurement showed distinct, subject-specific tibiofemoral kinematic patterns in the early/mid-swing phase of gait. Conclusions: Our findings suggest that accurate movement analysis is sensitive for detecting acute instability events, but might be less robust in identifying general joint instability. Conversely, muscle synergy patterns seem to be able to identify muscular adaptation associated with underlying chronic knee instability. Funding: This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.


Assuntos
Artroplastia do Joelho , Instabilidade Articular , Humanos , Artroplastia do Joelho/efeitos adversos , Artroplastia do Joelho/métodos , Atividades Cotidianas , Fenômenos Biomecânicos/fisiologia , Instabilidade Articular/etiologia , Autorrelato
5.
J Physiol ; 601(2): 275-285, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510697

RESUMO

Muscle spindles, one of the two main classes of proprioceptors together with Golgi tendon organs, are sensory structures that keep the central nervous system updated about the position and movement of body parts. Although they were discovered more than 150 years ago, their function during movement is not yet fully understood. Here, we summarize the morphology and known functions of muscle spindles, with a particular focus on locomotion. Although certain properties such as the sensitivity to dynamic and static muscle stretch are long known, recent advances in molecular biology have allowed the characterization of the molecular mechanisms for signal transduction in muscle spindles. Building upon classic literature showing that a lack of sensory feedback is deleterious to locomotion, we bring to the discussion more recent findings that support a pivotal role of muscle spindles in maintaining murine and human locomotor robustness, defined as the ability to cope with perturbations. Yet, more research is needed to expand the existing mechanistic understanding of how muscle spindles contribute to the production of robust, functional locomotion in real world settings. Future investigations should focus on combining different animal models to identify, in health and disease, those peripheral, spinal and brain proprioceptive structures involved in the fine tuning of motor control when locomotion happens in challenging conditions.


Assuntos
Mecanorreceptores , Fusos Musculares , Camundongos , Humanos , Animais , Fusos Musculares/fisiologia , Mecanorreceptores/fisiologia , Propriocepção/fisiologia , Locomoção/fisiologia , Coluna Vertebral , Músculo Esquelético/fisiologia
6.
J Physiol ; 600(24): 5267-5294, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271747

RESUMO

Robust locomotion relies on information from proprioceptors: sensory organs that communicate the position of body parts to the spinal cord and brain. Proprioceptive circuits in the spinal cord are known to coarsely regulate locomotion in the presence of perturbations. Yet, the regulatory importance of the brain in maintaining robust locomotion remains less clear. Here, through mouse genetic studies and in vivo electrophysiology, we examined the role of the brain in integrating proprioceptive information during perturbed locomotion. The systemic removal of proprioceptors left the mice in a constantly perturbed state, similar to that observed during mechanically perturbed locomotion in wild-type mice and characterised by longer and less accurate synergistic activation patterns. By contrast, after surgically interrupting the ascending proprioceptive projection to the brain through the dorsal column of the spinal cord, wild-type mice showed normal walking behaviour, yet lost the ability to respond to external perturbations. Our findings provide direct evidence of a pivotal role for ascending proprioceptive information in achieving robust, safe locomotion. KEY POINTS: Whether brain integration of proprioceptive feedback is crucial for coping with perturbed locomotion is not clear. We showed a crucial role of the brain for responding to external perturbations and ensure robust locomotion. We used mouse genetics to remove proprioceptors and a spinal lesion model to interrupt the flow of proprioceptive information to the brain through the dorsal column in wild-type animals. Using a custom-built treadmill, we administered sudden and random mechanical perturbations to mice during walking. External perturbations affected locomotion in wild-type mice similar to the absence of proprioceptors in genetically modified mice. Proprioceptive feedback from muscle spindles and Golgi tendon organs contributed to locomotor robustness. Wild-type mice lost the ability to respond to external perturbations after interruption of the ascending proprioceptive projection to the brainstem.


Assuntos
Locomoção , Propriocepção , Animais , Camundongos , Propriocepção/fisiologia , Locomoção/fisiologia , Fusos Musculares/fisiologia , Retroalimentação Sensorial , Encéfalo
7.
Heliyon ; 8(6): e09573, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35756118

RESUMO

The acute and delayed phases of the functional recovery pattern after running exercise have been studied mainly in men. However, it seems that women are less fatigable and/or recover faster than men, at least when tested in isometric condition. After a 20 km graded running race, the influence of sex on the delayed phase of recovery at 2-4 days was studied using a horizontal ballistic force-velocity test. Nine female and height male recreational runners performed maximal concentric push-offs at four load levels a week before the race (PRE), 2 and 4 days (D2 and D4) later. Ground reaction forces and surface electromyographic (EMG) activity from 8 major lower limb muscles were recorded. For each session, the mechanical force-velocity-power profile (i.e. theoretical maximal values of force ( F ¯ 0), velocity ( V ¯ 0), and power ( P ¯ max)) was computed. Mean EMG activity of each recorded muscle and muscle synergies (three for both men and women) were extracted. Independently of the testing sessions, men and women differed regarding the solicitation of the bi-articular thigh muscles (medial hamstring muscles and rectus femoris). At mid-push-off, female made use of more evenly distributed lower limb muscle activities than men. No fatigue effect was found for both sexes when looking at the mean ground reaction forces. However, the force-velocity profile varied by sex throughout the recovery: only men showed a decrease of both V ¯ 0 (p < 0.05) and P ¯ max (p < 0.01) at D2 compared to PRE. Vastus medialis activity was reduced for both men and women up to D4, but only male synergies were impacted at D2: the center of activity of the first and second synergies was reached later. This study suggests that women could recover earlier in a dynamic multi-joint task and that sex-specific organization of muscle synergies may have contributed to their different recovery times after such a race.

8.
PLoS One ; 17(6): e0269417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35658057

RESUMO

There is increasing evidence that including sex as a biological variable is of crucial importance to promote rigorous, repeatable and reproducible science. In spite of this, the body of literature that accounts for the sex of participants in human locomotion studies is small and often produces controversial results. Here, we investigated the modular organization of muscle activation patterns for human locomotion using the concept of muscle synergies with a double purpose: i) uncover possible sex-specific characteristics of motor control and ii) assess whether these are maintained in older age. We recorded electromyographic activities from 13 ipsilateral muscles of the lower limb in young and older adults of both sexes walking (young and old) and running (young) on a treadmill. The data set obtained from the 215 participants was elaborated through non-negative matrix factorization to extract the time-independent (i.e., motor modules) and time-dependent (i.e., motor primitives) coefficients of muscle synergies. We found sparse sex-specific modulations of motor control. Motor modules showed a different contribution of hip extensors, knee extensors and foot dorsiflexors in various synergies. Motor primitives were wider (i.e., lasted longer) in males in the propulsion synergy for walking (but only in young and not in older adults) and in the weight acceptance synergy for running. Moreover, the complexity of motor primitives was similar in younger adults of both sexes, but lower in older females as compared to older males. In essence, our results revealed the existence of small but defined sex-specific differences in the way humans control locomotion and that these are not entirely maintained in older age.


Assuntos
Músculo Esquelético , Caminhada , Idoso , Eletromiografia , Teste de Esforço , Feminino , Humanos , Locomoção/fisiologia , Extremidade Inferior/fisiologia , Masculino , Músculo Esquelético/fisiologia , Caminhada/fisiologia
9.
Hum Mov Sci ; 82: 102937, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35217390

RESUMO

Generalisation of adaptations is key to effective stability control facing variety of postural threats during daily life activity. However, in a previous study we could demonstrate that adaptations to stability control do not necessarily transfer to an untrained motor task. Here, we examined the dynamic stability and modular organisation of motor responses to different perturbations (i.e. unpredictable gait-trip perturbations and subsequent loss of anterior stability in a lean-and-release protocol) in a group of young and middle-aged adults (n = 57; age range 19-53 years) to detect potential neuromotor factors limiting transfer of adaptations within the stability control system. We hypothesized that the motor system uses different modular organisation in recovery responses to tripping and lean-and-release, which may explain lack in positive transfer of adaptations in stability control. After eight trip-perturbations participants increased their dynamic stability during the first recovery step (p < 0.001), yet they showed no significant improvement to the untrained lean-and-release transfer task compared to controls who did not undergo the perturbation exposure (p = 0.44). Regarding the neuromuscular control of responses, lower number of synergies (3 vs. 4) was found for the lean-and-release compared to the gait-trip perturbation task, revealing profound differences in both the timing and function of the recruited muscles to match the biomechanical specificity of different perturbations. Our results provide indirect evidence that the motor system uses different modular organisation in diverse perturbation responses, what possibly inhibits inter-task generalisation of adaptations in stability control.


Assuntos
Marcha , Equilíbrio Postural , Adaptação Fisiológica/fisiologia , Adulto , Fenômenos Biomecânicos , Marcha/fisiologia , Generalização Psicológica , Humanos , Pessoa de Meia-Idade , Músculos , Equilíbrio Postural/fisiologia , Adulto Jovem
10.
Sensors (Basel) ; 22(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35062633

RESUMO

Daily life activities often require humans to perform locomotion in challenging scenarios. In this context, this study aimed at investigating the effects induced by anterior-posterior (AP) and medio-lateral (ML) perturbations on walking. Through this aim, the experimental protocol involved 12 participants who performed three tasks on a treadmill consisting of one unperturbed and two perturbed walking tests. Inertial measurement units were used to gather lower limb kinematics. Parameters related to joint angles, as the range of motion (ROM) and its variability (CoV), as well as the inter-joint coordination in terms of continuous relative phase (CRP) were computed. The AP perturbation seemed to be more challenging causing differences with respect to normal walking in both the variability of the ROM and the CRP amplitude and variability. As ML, only the ankle showed different behavior in terms of joint angle and CRP variability. In both tasks, a shortening of the stance was found. The findings should be considered when implementing perturbed rehabilitative protocols for falling reduction.


Assuntos
Marcha , Caminhada , Articulação do Tornozelo , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular , Adulto Jovem
11.
Front Physiol ; 12: 686259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34795597

RESUMO

In this paper we examined how runners with different initial foot strike pattern (FSP) develop their pattern over increasing speeds. The foot strike index (FSI) of 47 runners [66% initially rearfoot strikers (RFS)] was measured in six speeds (2.5-5.0 ms-1), with the hypotheses that the FSI would increase (i.e., move toward the fore of the foot) in RFS strikers, but remain similar in mid- or forefoot strikers (MFS) runners. The majority of runners (77%) maintained their original FSP by increasing speed. However, we detected a significant (16.8%) decrease in the FSI in the MFS group as a function of running speed, showing changes in the running strategy, despite the absence of a shift from one FSP to another. Further, while both groups showed a decrease in contact times, we found a group by speed interaction (p < 0.001) and specifically that this decrease was lower in the MFS group with increasing running speeds. This could have implications in the metabolic energy consumption for MFS-runners, typically measured at low speeds for the assessment of running economy.

12.
Elife ; 102021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473056

RESUMO

Human running features a spring-like interaction of body and ground, enabled by elastic tendons that store mechanical energy and facilitate muscle operating conditions to minimize the metabolic cost. By experimentally assessing the operating conditions of two important muscles for running, the soleus and vastus lateralis, we investigated physiological mechanisms of muscle work production and muscle force generation. We found that the soleus continuously shortened throughout the stance phase, operating as work generator under conditions that are considered optimal for work production: high force-length potential and high enthalpy efficiency. The vastus lateralis promoted tendon energy storage and contracted nearly isometrically close to optimal length, resulting in a high force-length-velocity potential beneficial for economical force generation. The favorable operating conditions of both muscles were a result of an effective length and velocity-decoupling of fascicles and muscle-tendon unit, mostly due to tendon compliance and, in the soleus, marginally by fascicle rotation.


Assuntos
Músculo Quadríceps/fisiologia , Corrida/fisiologia , Tendões/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Contração Muscular/fisiologia , Adulto Jovem
13.
Front Neural Circuits ; 15: 639900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897379

RESUMO

A key function of the mesencephalic locomotor region (MLR) is to control the speed of forward symmetrical locomotor movements. However, the ability of freely moving mammals to integrate environmental cues to brake and turn during MLR stimulation is poorly documented. Here, we investigated whether freely behaving mice could brake or turn, based on environmental cues during MLR stimulation. We photostimulated the cuneiform nucleus (part of the MLR) in mice expressing channelrhodopsin in Vglut2-positive neurons in a Cre-dependent manner (Vglut2-ChR2-EYFP) using optogenetics. We detected locomotor movements using deep learning. We used patch-clamp recordings to validate the functional expression of channelrhodopsin and neuroanatomy to visualize the stimulation sites. In the linear corridor, gait diagram and limb kinematics were similar during spontaneous and optogenetic-evoked locomotion. In the open-field arena, optogenetic stimulation of the MLR evoked locomotion, and increasing laser power increased locomotor speed. Mice could brake and make sharp turns (~90°) when approaching a corner during MLR stimulation in the open-field arena. The speed during the turn was scaled with the speed before the turn, and with the turn angle. Patch-clamp recordings in Vglut2-ChR2-EYFP mice show that blue light evoked short-latency spiking in MLR neurons. Our results strengthen the idea that different brainstem neurons convey braking/turning and MLR speed commands in mammals. Our study also shows that Vglut2-positive neurons of the cuneiform nucleus are a relevant target to increase locomotor activity without impeding the ability to brake and turn when approaching obstacles, thus ensuring smooth and adaptable navigation. Our observations may have clinical relevance since cuneiform nucleus stimulation is increasingly considered to improve locomotion function in pathological states such as Parkinson's disease, spinal cord injury, or stroke.


Assuntos
Mesencéfalo , Optogenética , Animais , Tronco Encefálico , Estimulação Elétrica , Locomoção , Camundongos , Neurônios
14.
Sci Rep ; 11(1): 6122, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731729

RESUMO

Understanding the modulations of motor control in the presence of perturbations in task conditions of varying complexity is a key element towards the design of effective perturbation-based balance exercise programs. In this study we investigated the effect of mechanical perturbations, induced by an unstable surface, on muscle activation and visuo-postural coupling, when actively tracking target motion cues of different complexity. Four postural tasks following a visual oscillating target of varying target complexity (periodic-sinusoidal vs. chaotic-Lorenz) and surface (stable-floor vs. unstable-foam) were performed. The electromyographic activity of the main plantarflexor and dorsiflexor muscles was captured. The coupling between sway and target was assessed through spectral analysis and the system's local dynamic stability through the short-term maximum Lyapunov exponent. We found that external perturbations increased local instability and deteriorated visuo-motor coupling. Visuo-motor deterioration was greater for the chaotic target, implying that the effect of the induced perturbations depends on target complexity. There was a modulation of the neuromotor system towards amplification of muscle activity and coactivation to compensate surface-related perturbations and to ensure robust motor control. Our findings provide evidence that, in the presence of perturbations, target complexity induces specific modulations in the neuromotor system while controlling balance and posture.


Assuntos
Eletromiografia , Músculo Esquelético/fisiologia , Equilíbrio Postural/fisiologia , Posição Ortostática , Adulto , Feminino , Humanos , Masculino
15.
Proc Biol Sci ; 288(1943): 20202784, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33499791

RESUMO

During human running, the soleus, as the main plantar flexor muscle, generates the majority of the mechanical work through active shortening. The fraction of chemical energy that is converted into muscular work (enthalpy efficiency) depends on the muscle shortening velocity. Here, we investigated the soleus muscle fascicle behaviour during running with respect to the enthalpy efficiency as a mechanism that could contribute to improvements in running economy after exercise-induced increases of plantar flexor strength and Achilles tendon (AT) stiffness. Using a controlled longitudinal study design (n = 23) featuring a specific 14-week muscle-tendon training, increases in muscle strength (10%) and tendon stiffness (31%) and reduced metabolic cost of running (4%) were found only in the intervention group (n = 13, p < 0.05). Following training, the soleus fascicles operated at higher enthalpy efficiency during the phase of muscle-tendon unit (MTU) lengthening (15%) and in average over stance (7%, p < 0.05). Thus, improvements in energetic cost following increases in plantar flexor strength and AT stiffness seem attributed to increased enthalpy efficiency of the operating soleus muscle. The results further imply that the soleus energy production in the first part of stance, when the MTU is lengthening, may be crucial for the overall metabolic energy cost of running.


Assuntos
Tendão do Calcâneo , Corrida , Fenômenos Biomecânicos , Humanos , Estudos Longitudinais , Contração Muscular , Músculo Esquelético
16.
Front Bioeng Biotechnol ; 9: 761766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34976964

RESUMO

Stability training in the presence of perturbations is an effective means of increasing muscle strength, improving reactive balance performance, and reducing fall risk. We investigated the effects of perturbations induced by an unstable surface during single-leg landings on the mechanical loading and modular organization of the leg muscles. We hypothesized a modulation of neuromotor control when landing on the unstable surface, resulting in an increase of leg muscle loading. Fourteen healthy adults performed 50 single-leg landings from a 30 cm height onto two ground configurations: stable solid ground (SG) and unstable foam pads (UG). Ground reaction force, joint kinematics, and electromyographic activity of 13 muscles of the landing leg were measured. Resultant joint moments were calculated using inverse dynamics and muscle synergies with their time-dependent (motor primitives) and time-independent (motor modules) components were extracted via non-negative matrix factorization. Three synergies related to the touchdown, weight acceptance, and stabilization phase of landing were found for both SG and UG. When compared with SG, the motor primitive of the touchdown synergy was wider in UG (p < 0.001). Furthermore, in UG the contribution of gluteus medius increased (p = 0.015) and of gastrocnemius lateralis decreased (p < 0.001) in the touchdown synergy. Weight acceptance and stabilization did not show any statistically significant differences between the two landing conditions. The maximum ankle and hip joint moment as well as the rate of ankle, knee, and hip joint moment development were significantly lower (p < 0.05) in the UG condition. The spatiotemporal modifications of the touchdown synergy in the UG condition highlight proactive adjustments in the neuromotor control of landings, which preserve reactive adjustments during the weight acceptance and stabilization synergies. Furthermore, the performed proactive control in combination with the viscoelastic properties of the soft surface resulted in a reduction of the mechanical loading in the lower leg muscles. We conclude that the use of unstable surfaces does not necessarily challenge reactive motor control nor increase muscle loading per se. Thus, the characteristics of the unstable surface and the dynamics of the target task must be considered when designing perturbation-based interventions.

17.
Front Bioeng Biotechnol ; 8: 581619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195143

RESUMO

The use of motorized treadmills as convenient tools for the study of locomotion has been in vogue for many decades. However, despite the widespread presence of these devices in many scientific and clinical environments, a full consensus on their validity to faithfully substitute free overground locomotion is still missing. Specifically, little information is available on whether and how the neural control of movement is affected when humans walk and run on a treadmill as compared to overground. Here, we made use of linear and non-linear analysis tools to extract information from electromyographic recordings during walking and running overground, and on an instrumented treadmill. We extracted synergistic activation patterns from the muscles of the lower limb via non-negative matrix factorization. We then investigated how the motor modules (or time-invariant muscle weightings) were used in the two locomotion environments. Subsequently, we examined the timing of motor primitives (or time-dependent coefficients of muscle synergies) by calculating their duration, the time of main activation, and their Hurst exponent, a non-linear metric derived from fractal analysis. We found that motor modules were not influenced by the locomotion environment, while motor primitives were overall more regular in treadmill than in overground locomotion, with the main activity of the primitive for propulsion shifted earlier in time. Our results suggest that the spatial and sensory constraints imposed by the treadmill environment might have forced the central nervous system to adopt a different neural control strategy than that used for free overground locomotion, a data-driven indication that treadmills could induce perturbations to the neural control of locomotion.

18.
Heliyon ; 6(10): e05377, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163662

RESUMO

Walking and running are mechanically and energetically different locomotion modes. For selecting one or another, speed is a parameter of paramount importance. Yet, both are likely controlled by similar low-dimensional neuronal networks that reflect in patterned muscle activations called muscle synergies. Here, we challenged human locomotion by having our participants walk and run at a very broad spectrum of submaximal and maximal speeds. The synergistic activations of lower limb locomotor muscles were obtained through decomposition of electromyographic data via non-negative matrix factorization. We analyzed the duration and complexity (via fractal analysis) over time of motor primitives, the temporal components of muscle synergies. We found that the motor control of high-speed locomotion was so challenging that the neuromotor system was forced to produce wider and less complex muscle activation patterns. The motor modules, or time-independent coefficients, were redistributed as locomotion speed changed. These outcomes show that humans cope with the challenges of high-speed locomotion by adapting the neuromotor dynamics through a set of strategies that allow for efficient creation and control of locomotion.

19.
J Neurophysiol ; 124(4): 1083-1091, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816603

RESUMO

Time-dependent physiological data sets are often difficult to interpret objectively. Biosignals such as electromyogram, electroencephalogram, or single-neuron recordings can be interpreted using various linear and nonlinear methods. Each analysis technique aims at the explanation of different data features that might be visible or not to the naked eye. Here, we used linear decomposition based on machine learning to extract motor primitives (the time-dependent coefficients of muscle synergies) from the hindlimb electromyographic activity of mice during normal and mechanically perturbed locomotion. We set out to investigate the effects of calculation parameters and data quality on two nonlinear metrics derived from fractal analysis: the Higuchi's fractal dimension (HFD) and the Hurst exponent (H). Both HFD and H proved to be exceptionally sensitive to changes in motor primitives induced by external perturbations to locomotion. We discuss the potential pitfalls that might arise from fractal analysis by using examples based on surrogate data. We conclude giving some simple, data-driven suggestions to reduce the chance of misinterpretations when metrics such as HFD and H are applied to any biological signal containing elements of periodicity.NEW & NOTEWORTHY Despite the lack of consensus on how to perform fractal analysis of physiological time series, many studies rely on this technique. Here, we shed light on the potential pitfalls of using the Higuchi's fractal dimension and the Hurst exponent. We expose and suggest how to solve the drawbacks of such methods when applied to data from normal and perturbed locomotion by combining in vivo recordings and computational approaches.


Assuntos
Eletromiografia/métodos , Locomoção , Músculo Esquelético/fisiologia , Animais , Aprendizado de Máquina , Camundongos , Camundongos Endogâmicos C57BL
20.
Appl Bionics Biomech ; 2020: 2041549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676126

RESUMO

In the last few decades, a number of technological developments have advanced the spread of wearable sensors for the assessment of human motion. These sensors have been also developed to assess athletes' performance, providing useful guidelines for coaching, as well as for injury prevention. The data from these sensors provides key performance outcomes as well as more detailed kinematic, kinetic, and electromyographic data that provides insight into how the performance was obtained. From this perspective, inertial sensors, force sensors, and electromyography appear to be the most appropriate wearable sensors to use. Several studies were conducted to verify the feasibility of using wearable sensors for sport applications by using both commercially available and customized sensors. The present study seeks to provide an overview of sport biomechanics applications found from recent literature using wearable sensors, highlighting some information related to the used sensors and analysis methods. From the literature review results, it appears that inertial sensors are the most widespread sensors for assessing athletes' performance; however, there still exist applications for force sensors and electromyography in this context. The main sport assessed in the studies was running, even though the range of sports examined was quite high. The provided overview can be useful for researchers, athletes, and coaches to understand the technologies currently available for sport performance assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA