Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 8(3)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707906

RESUMO

Human cytomegalovirus (HCMV) infection rates approach 100% by the first year of life in low-income countries. It is not known if this drives changes to innate immunity in early life and thereby altered immune reactivity to infections and vaccines. Given the panoply of sex differences in immunity, it is feasible that any immunological effects of HCMV would differ in males and females. We analysed ex vivo innate cytokine responses to a panel of toll-like receptor (TLR) ligands in 108 nine-month-old Gambian males and females participating in a vaccine trial. We found evidence that HCMV suppressed reactivity to TLR2 and TLR7/8 stimulation in females but not males. This is likely to contribute to sex differences in responses to infections and vaccines in early life and has implications for the development of TLR ligands as vaccine adjuvants. Development of an effective HCMV vaccine would be able to circumvent some of these potentially negative effects of HCMV infection in childhood.

2.
Front Immunol ; 11: 1083, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582177

RESUMO

Human cytomegalovirus (HCMV) infection has a profound effect on the human immune system, causing massive clonal expansion of CD8, and to a lesser extend CD4 T cells. The few human trials that have explored the effect of HCMV infection on responses to vaccination are conflicting, with some studies suggesting no effect whilst others suggest decreased or increased immune responses. Recent studies indicate substantial differences in overall immune system reactivity to vaccines based on age and sex, particularly cellular immunity. 225 nine-month old Gambian infants were immunized with diphtheria-tetanus-whole cell pertussis and/or measles vaccines. HCMV infection status was determined by the presence of CMV DNA by PCR of urine samples prior to vaccination. The effect of HCMV infection on either protective antibody immunity or vaccine-specific and overall cellular immune responses 4 weeks post-vaccination was determined, further stratified by sex. Tetanus toxoid-specific antibody responses were significantly lower in HCMV+ infants compared to their HCMV- counterparts, while pertussis, diphtheria and measles antibody responses were generally comparable between the groups. Responses to general T cell stimulation with anti-CD3/anti-CD28 as well as antigen-specific cytokine responses to purified protein derivative (PPD) were broadly suppressed in infants infected with HCMV but, perhaps surprisingly, there was only a minimal impact on antigen-specific cellular responses to vaccine antigens. There was evidence for subtle sex differences in the effects of HCMV infection, in keeping with the emerging evidence suggesting sex differences in homeostatic immunity and in responses to vaccines. This study reassuringly suggests that the high rates of HCMV infection in low income settings have little clinically significant impact on antibody and cellular responses to early life vaccines, while confirming the importance of sex stratification in such studies.


Assuntos
Infecções por Citomegalovirus/imunologia , Vacina contra Difteria, Tétano e Coqueluche/imunologia , Vacina contra Sarampo/imunologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antivirais/biossíntese , Estudos de Coortes , Citocinas/sangue , Feminino , Gâmbia , Humanos , Tolerância Imunológica , Imunidade Celular , Imunoglobulina G/sangue , Lactente , Masculino , Estudos Prospectivos , Caracteres Sexuais , Linfócitos T/imunologia , Toxoide Tetânico/imunologia
3.
Front Immunol ; 8: 921, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28855899

RESUMO

Regulatory T cells (Tregs) play a key homeostatic role by suppressing immune responses. They have been targeted in mouse and human cancer studies to improve vaccine immunogenicity and tumor clearance. A number of commercially available drugs and experimental vaccine adjuvants have been shown to target Tregs. Infants have high numbers of Tregs and often have poor responses to vaccination, yet the role Tregs play in controlling vaccine immunogenicity has not been explored in this age group. Herein, we explore the role of CD4+FOXP3+CD127- Tregs in controlling immunity in infant males and females to vaccination with diphtheria-tetanus-whole cell pertussis (DTP) and/or measles vaccine (MV). We find correlative evidence that circulating Tregs at the time of vaccination suppress antibody responses to MV but not DTP; and Tregs 4 weeks after DTP vaccination may suppress vaccine-specific cellular immunity. This opens the exciting possibility that Tregs may provide a future target for improved vaccine responses in early life, including reducing the number of doses of vaccine required. Such an approach would need to be safe and the benefits outweigh the risks, thus further research in this area is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA