RESUMO
MicroRNA (miR)-19b is deregulated in colorectal cancer (CRC) and locally advanced rectal cancer (LARC), predicting worse outcome and disease progression in CRC patients, and acting as a promising prognostic marker of patient recurrence and pathological response to 5-fluorouracil (5-FU)-based neoadjuvant chemoradiotherapy in LARC. Moreover, there is a strong inverse correlation between miR-19b and PPP2R5E in LARC, and both predict the response to neoadjuvant therapy in LARC patients. However, the functional role of the miR-19b/PPP2R5E axis in CRC cells remains to be experimentally evaluated. Here, we confirm with luciferase assays that miR-19b is a direct negative regulator of PPP2R5E in CRC, which is concordant with the observed decreased PP2A activity levels after miR-19b overexpression. Furthermore, PPP2R5E downregulation plays a key role mediating miR-19b-induced oncogenic effects, increasing cell viability, colonosphere formation ability, and the migration of CRC cells. Lastly, we also confirm the role of miR-19b mediating 5-FU sensitivity of CRC cells through negative PPP2R5E regulation. Altogether, our findings demonstrate the functional relevance of the miR-19b/PPP2R5E signaling pathway in disease progression, and its potential therapeutic value determining the 5-FU response of CRC cells.
Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Neoplasias Colorretais/patologia , MicroRNAs/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Proteína Fosfatase 2/genética , Proteína Fosfatase 2/metabolismoRESUMO
The combination of trastuzumab and pertuzumab as first-line therapy in patients with HER2-positive breast cancer has shown significant clinical benefits compared to trastuzumab alone. However, despite initial therapeutic success, most patients eventually progress, and tumors develop acquired resistance and invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance in order to develop targeted therapeutic strategies with improved efficacy. We generated four novel HER2-positive cell lines via prolonged exposure to trastuzumab and pertuzumab and determined their resistance rates. Long-term resistance was confirmed by a significant increase in the colony-forming capacity of the derived cells. We authenticated the molecular identity of the new lines via both immunohistochemistry for the clinical phenotype and molecular profiling of point mutations. HER2 overexpression was confirmed in all resistant cell lines, and acquisition of resistance to trastuzumab and pertuzumab did not translate into differences in ER, PR, and HER2 receptor expression. In contrast, changes in the expression and activity of other HER family members, particularly HER4, were observed. In the same vein, analyses of the receptor and effector kinase status of different cellular pathways revealed that the MAPK pathway may be involved in the acquisition of resistance to trastuzumab and pertuzumab. Finally, proteomic analysis confirmed a significant change in the abundance patterns of more than 600 proteins with implications in key biological processes, such as ribosome formation, mitochondrial activity, and metabolism, which could be relevant mechanisms in the generation of resistance in HER2-positive breast cancer. We concluded that these resistant BCCLs may be a valuable tool to better understand the mechanisms of acquisition of resistance to trastuzumab and pertuzumab-based anti-HER2 therapy.
Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias da Mama , Humanos , Feminino , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proteômica , Recidiva Local de Neoplasia , Linhagem CelularRESUMO
Human epidermal growth factor receptor 2-positive (HER2-positive) breast cancer accounts for 15 to 25% of breast cancer cases. Although therapies based on the use of monoclonal anti-HER2 antibodies present clinical benefit for a subtype of patients with HER2-positive breast cancer, more than 50% of them are unresponsive to targeted therapies or they eventually relapse. In recent years, reactivation of the adaptive immune system in patients with solid tumors has emerged as a therapeutic option with great potential for clinical benefit. Since the approval of the first treatment directed against HER2 as a therapeutic target, the range of clinical options has expanded greatly, and, in this sense, cellular immunotherapy with T cells relies on the cytotoxicity generated by these cells, which ultimately leads to antitumor activity. Lymphocytic infiltration of tumors encompasses a heterogeneous population of immune cells within the tumor microenvironment that exhibits distinct patterns of immune activation and exhaustion. The prevalence and prognostic value of tumor-infiltrating lymphocyte (TIL) counts are associated with a favorable prognosis in HER2-positive breast cancers. This review discusses emerging findings that contribute to a better understanding of the role of immune infiltrates in HER2-positive breast cancer. In addition, it summarizes the most recent results in HER2-positive breast cancer immunotherapy and anticipates which therapeutic strategies could be applied in the immediate future.
RESUMO
The standard clinical management of locally advanced rectal cancer (LARC) patients includes neoadjuvant 5-fluorouracil (5-FU)-based chemoradiotherapy (CRT) followed by mesorectal excision. MicroRNA (miR)-19b expression levels in LARC biopsies obtained from initial colonoscopy have recently been identified as independent predictors of both patient outcome and pathological response to preoperative CRT in this disease. Moreover, it has been discovered that this miR increases its expression in 5-FU resistant colon cancer cells after 5-FU exposure. Despite the fact that these observations suggest a functional role of miR-19b modulating 5-FU response of LARC cells, this issue still remains to be clarified. Here, we show that downregulation of miR-19b enhances the antitumor effects of 5-FU treatment. Moreover, ectopic miR-19b modulation was able to restore sensitivity to 5-FU treatment using an acquired resistant model to this compound. Notably, we also evaluated the potential clinical impact of miR-19b as a predictive marker of disease progression after tumor surgery resection in LARC patients, observing that miR-19b overexpression significantly anticipates patient recurrence in our cohort (p = 0.002). Altogether, our findings demonstrate the functional role of miR-19b in the progressively decreasing sensitivity to 5-FU treatment and its potential usefulness as a therapeutic target to overcome 5-FU resistance, as well as its clinical impact as predictor of tumor progression and relapse.
Assuntos
MicroRNAs , Neoplasias Retais , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/tratamento farmacológico , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia NeoadjuvanteRESUMO
Together with its reported ability to modulate AKT phosphorylation (p-AKT) status in several tumor types, the oncoprotein CIP2A has been described to induce breast cancer progression and drug resistance. However, the clinical and therapeutic relevance of the CIP2A/AKT interplay in breast cancer remains to be fully clarified. Here, we found high p-AKT levels in 80 out of 220 cases (36.4%), which were associated with negative estrogen receptor expression (p = 0.049) and CIP2A overexpression (p < 0.001). Interestingly, p-AKT determined substantially shorter overall (p = 0.002) and progression-free survival (p = 0.003), and multivariate analyses showed its CIP2A-independent prognostic value. Moreover, its clinical relevance was further confirmed in the triple negative and HER2-positive subgroups after stratifying our series by molecular subtype. Functionally, we confirmed in vitro the role of CIP2A as a regulator of p-AKT levels in breast cancer cell lines, and the importance of the CIP2A/AKT axis was also validated in vivo. Finally, p-AKT also showed a higher predictive value of response to doxorubicin than CIP2A in ex vivo analyses. In conclusion, our findings suggest that CIP2A overexpression is a key contributing event to AKT phosphorylation and highlights the CIP2A/AKT axis as a promising therapeutic target in breast cancer. However, our observations highlight the existence of alternative mechanisms that regulate AKT signaling in a subgroup of breast tumors without altered CIP2A expression that determines its independent value as a marker of poor outcome in this disease.
RESUMO
The identification of robust prognostic markers still represents a need in locally advanced rectal cancer (LARC). MicroRNAs (miRs) have progressively emerged as promising circulating markers, overcoming some limitations that traditional biopsy comprises. Tissue miR-199b deregulation has been reported to predict outcome and response to neoadjuvant chemoradiotherapy (nCRT) in LARC, and was also found to be associated with disease progression in colorectal cancer. However, its biological and clinical relevance remains to be fully clarified. Thus, we observed here that miR-199b regulates cell migration, aggressiveness, and cell growth, and inhibits colonosphere formation and induces caspase-dependent apoptosis. Moreover, miR-199b expression was quantified by real-time PCR in plasma samples from LARC patients and its downregulation was observed in 22.7% of cases. This alteration was found to be associated with higher tumor size (p = 0.002) and pathological stage (p = 0.020) after nCRT. Notably, we observed substantially lower global miR-199b expression associated with patient downstaging (p = 0.009), as well as in non-responders compared to those cases who responded to nCRT in both pre- (p = 0.003) and post-treatment samples (p = 0.038). In concordance, we found that miR-199b served as a predictor marker of response to neoadjuvant therapy in our cohort (p = 0.011). Altogether, our findings here demonstrate the functional relevance of miR-199b in this disease and its potential value as a novel circulating marker in LARC.
Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , MicroRNAs/genética , Oncogenes/genética , Neoplasias Retais/genética , Idoso , Regulação para Baixo/genética , Feminino , Humanos , Masculino , MicroRNAs/metabolismo , Prognóstico , Neoplasias Retais/patologia , Reto/patologiaRESUMO
The combination of trastuzumab plus pertuzumab plus docetaxel as a first-line therapy in patients with HER2-positive metastatic breast cancer has provided significant clinical benefits compared to trastuzumab plus docetaxel alone. However, despite the therapeutic success of existing therapies targeting HER2, tumours invariably relapse. Therefore, there is an urgent need to improve our understanding of the mechanisms governing resistance, so that specific therapeutic strategies can be developed to provide improved efficacy. It is well known that the tumour microenvironment (TME) has a significant impact on cancer behaviour. Cancer-associated fibroblasts (CAFs) are essential components of the tumour stroma that have been linked to acquired therapeutic resistance and poor prognosis in breast cancer. For this reason, it would be of interest to identify novel biomarkers in the tumour stroma that could emerge as therapeutic targets for the modulation of resistant phenotypes. Conditioned medium experiments carried out in our laboratory with CAFs derived from HER2-positive patients showed a significant capacity to promote resistance to trastuzumab plus pertuzumab therapies in two HER2-positive breast cancer cell lines (BCCLs), even in the presence of docetaxel. In order to elucidate the components of the CAF-conditioned medium that may be relevant in the promotion of BCCL resistance, we implemented a multiomics strategy to identify cytokines, transcription factors, kinases and miRNAs in the secretome that have specific targets in cancer cells. The combination of cytokine arrays, label-free LC-MS/MS quantification and miRNA analysis to explore the secretome of CAFs under treatment conditions revealed several up- and downregulated candidates. We discuss the potential role of some of the most interesting candidates in generating resistance in HER2-positive breast cancer.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/metabolismo , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Docetaxel/farmacologia , Feminino , Humanos , Trastuzumab/farmacologiaRESUMO
The absence of established predictive markers with value to anticipate response to neoadjuvant 5-fluorouracil (5-FU)-based chemoradiotherapy (CRT) represents a current major challenge in locally advanced rectal cancer (LARC). The tumor suppressor microRNA (miR)-199b has been reported to play a key role determining 5-FU sensitivity of colorectal cancer cells through the regulation of several signaling pathways, and has emerged as a novel molecular target to overcome the 5-FU resistant phenotype. Moreover, miR-199b downregulation was described as a common alteration that predicts lack of response to preoperative CRT in LARC but this issue needs to be confirmed in independent larger cohorts. Here, we evaluate the clinical impact of miR-199b in LARC and perform additional analyses to further clarify its potential relevance as novel marker in this disease. Thus, miR-199b expression was quantified by real-time-PCR in a cohort of 185 LARC patients, observing this miR downregulated in 22.2% of cases and significantly associated with higher tumor size (p = 0.026) and positive lymph node after CRT (p = 0.005), and higher pathological stage (p = 0.004). Notably, this alteration showed a strong independent predictive value of poor pathological response to neoadjuvant CRT (p = 0.004). Moreover, the subgroup of cases with low miR-199b levels had a markedly shorter overall (p < 001) and event-free survival (p < 0.001), and multivariate analyses showed that miR-199b deregulation represents an independent prognosticator for patient outcome in LARC. Interestingly, the prognostic impact of this miR was strongly significant in both younger and elderly patients, and was very effective determining patient recurrence (p = 0.004). Finally, we compared miR-199b expression profiles in a set of cases with pre and post-treatment samples available, observing that only a minimal response leads to miR-199b increase levels, further suggesting its potential clinical and therapeutic relevance as a promising marker and novel molecular target for the management of LARC.
RESUMO
The use of anti-HER2 therapies has significantly improved clinical outcome in patients with HER2-positive breast cancer, yet a substantial proportion of patients acquire resistance after a period of treatment. The PI3K/AKT/mTOR pathway is a good target for drug development, due to its involvement in HER2-mediated signalling and in the emergence of resistance to anti-HER2 therapies, such as trastuzumab. This study evaluates the activity of three different PI3K/AKT/mTOR inhibitors, i.e., BEZ235, everolimus and TAK-228 in vitro, in a panel of HER2-positive breast cancer cell lines with primary and acquired resistance to trastuzumab. We assess the antiproliferative effect and PI3K/AKT/mTOR inhibitory capability of BEZ235, everolimus and TAK-228 alone, and in combination with trastuzumab. Dual blockade with trastuzumab and TAK-228 was superior in reversing the acquired resistance in all the cell lines. Subsequently, we analyse the effects of TAK-228 in combination with trastuzumab on the cell cycle and found a significant increase in G0/G1 arrest in most cell lines. Likewise, the combination of both drugs induced a significant increase in apoptosis. Collectively, these experiments support the combination of trastuzumab with PI3K/AKT/mTOR inhibitors as a potential strategy for inhibiting the proliferation of HER2-positive breast cancer cell lines that show resistance to trastuzumab.
RESUMO
The bromodomain-containing protein 4 (BRD4), a member of the bromodomain and extra-terminal domain (BET) protein family, has emerged in the last years as a promising molecular target in many tumors including breast cancer. The triple negative breast cancer (TNBC) represents the molecular subtype with the worst prognosis and a current therapeutic challenge, and TNBC cells have been reported to show a preferential sensitivity to BET inhibitors. Interestingly, BRD4 phosphorylation (pBRD4) was found as an alteration that confers resistance to BET inhibition and PP2A proposed as the phosphatase responsible to regulate pBRD4 levels. However, the potential clinical significance of pBRD4, as well as its potential correlation with the PP2A pathway in TNBC, remains to be investigated. Here, we evaluated the expression levels of pBRD4 in a series of 132 TNBC patients. We found high pBRD4 levels in 34.1% of cases (45/132), and this alteration was found to be associated with the development of patient recurrences (p = 0.007). Interestingly, BRD4 hyperphosphorylation predicted significantly shorter overall (p < 0.001) and event-free survival (p < 0.001). Moreover, multivariate analyses were performed to confirm its independent prognostic impact in our cohort. In conclusion, our findings show that BRD4 hyperphosphorylation is an alteration associated with PP2A inhibition that defines a subgroup of TNBC patients with unfavorable prognosis, suggesting the potential clinical and therapeutic usefulness of the PP2A/BRD4 axis as a novel molecular target to overcome resistance to treatments based on BRD4 inhibition.
RESUMO
The standard treatment for patients with locally advanced colorectal cancer (LARC) is neoadjuvant 5-fluorouracil (5-FU) based chemoradiotherapy (CRT) followed by surgical mesorectal excision. However, the lack of response to this preoperative treatment strongly compromises patient outcomes and leads to surgical delays and undesired toxicities in those non-responder cases. Thus, the identification of effective and robust biomarkers to predict response to preoperative CRT represents an urgent need in the current clinical management of LARC. The oncomiR microRNA-19b (miR-19b) has been reported to functionally play oncogenic roles in colorectal cancer (CRC) cells as well as regulate 5-FU sensitivity and determine outcome in CRC patients. However, its clinical impact in LARC has not been previously investigated. Here, we show that miR-19b deregulation is a common event in this disease, and its decreased expression significantly associates with lower tumor size after CRT (p = 0.003), early pathological stage (p = 0.003), and absence of recurrence (p = 0.001) in LARC patients. Interestingly, low miR-19b expression shows a predictive value of better response to neoajuvant CRT (p < 0.001), and the subgroup of LARC patients with low miR-19b levels have a markedly longer overall (p = 0.003) and event-free survival (p = 0.023). Finally, multivariate analyses determined that miR-19b independently predicts both patient outcome and response to preoperative CRT, highlighting its potential clinical usefulness in the management of LARC patients.
RESUMO
The endogenous PP2A inhibitor SET Nuclear Proto-Oncogene (SET) has been reported to play oncogenic roles and determines poor outcomes in colorectal cancer (CRC). Our group previously showed that miR-199b is deregulated in metastatic CRC, and reduced the cell viability and enhanced the sensitivity of CRC cells to standard induction chemotherapy drugs, mainly through direct negative SET regulation. Clinically, miR-199b downregulation was identified as the molecular mechanism responsible for SET overexpression in around half of metastatic CRC patients. However, the potential clinical value of miR-199b in early-stage CRC remains totally unknown. Thus, here we explored the expression levels of this microRNA in a cohort of 171 early-stage CRC patients using real-time polymerase chain reactions. MiR-199b downregulation was found in 21.6% of cases (37 out of 171) and was significantly associated with those patients with a worse Eastern Cooperative Oncology Group (ECOG) status (p = 0.045). Moreover, miR-199b downregulation predicted shorter overall (p < 0.001) and progression-free survival (p = 0.015). As expected, we next immunohistochemically analyzed SET, observing that it was significantly associated with miR-199b in our cohort. However, multivariate analyses showed that miR-199b was an independent biomarker of poor outcomes in early-stage CRC with a predictive value stronger than SET. In conclusion, our results highlight the potential clinical usefulness of miR-199b and suggest that it could represent a novel molecular target in this disease.
RESUMO
Neoadjuvant 5-fluorouracil (5-FU)-based chemoradiotherapy followed by mesorectal excision is the current standard treatment in locally advanced rectal cancer (LARC) and the lack of complete response represents a major problem that compromises long-term patient survival. However, there is a lack of robust established markers predictive of response to this preoperative treatment available in the clinical routine. The tumor suppressor microRNA (miR)-199b directly targets the PP2A inhibitor SET, which has been involved in 5-FU resistance, and its downregulation has been found to correlate with poor outcome in metastatic colorectal cancer. Here, we studied the functional effects of miR-199b on 5-FU sensitivity after its ectopic modulation, and its expression was quantified by real-time-PCR in a cohort of 110 LARC patients to evaluate its potential clinical significance. Interestingly, our findings demonstrate that miR-199b enhances the sensitivity of colorectal cancer cells to 5-FU in a SET-dependent manner, and that both miR-199b overexpression and SET inhibition are able to overcome resistance to this drug using an acquired 5-FU-resistant model. MiR-199b was found downregulated in 26.4% of cases and was associated with positive lymph node levels after chemoradiotherapy (CRT, p = 0.007) and high pathological stage (p = 0.029). Moreover, miR-199b downregulation determined shorter overall (p = 0.003) and event-free survival (p = 0.005), and was an independent predictor of poor response to preoperative CRT (p = 0.004). In conclusion, our findings highlight the clinical impact of miR-199b downregulation predicting poor outcome and pathological response in LARC, and suggest the miR-199b/SET signaling axis as a novel molecular target to prevent the development of resistance to 5-FU treatment.
RESUMO
HER2-positive breast cancer is currently managed with chemotherapy in combination with specific anti-HER2 therapies, including trastuzumab. However, a high percentage of patients with HER2-positive tumors do not respond to trastuzumab (primary resistance) or either recur (acquired resistance), mostly due to molecular alterations in the tumor that are either unknown or undetermined in clinical practice. Those alterations may cause the tumor to be refractory to treatment with trastuzumab, promoting tumor proliferation and metastasis. Using continued exposure of a HER2-positive cell line to trastuzumab, we generated a model of acquired resistance characterized by increased expression of several cytokines. Differential gene expression analysis indicated an overexpression of 15 genes, including five different chemokines, and highlighting CCL5/RANTES as the most overexpressed one. Functional studies, either by in vitro gene silencing or by in vitro and in vivo pharmacologic inhibition of the CCL5/CCR5 interaction with maraviroc, confirmed that CCL5 overexpression was implicated in acquired resistance to trastuzumab, which was mediated by ERK activation. In patient samples, increased CCL5 expression significantly correlated with lower rates of complete response after neoadjuvant therapy, confirmed by detection of high serum CCL5 levels by ELISA. Overexpression of CCL5 correlated with ERK phosphorylation in tumor cells and was statistically associated with worse disease-free survival and overall cancer survival in patients with early HER2-positive breast cancer.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Quimiocina CCL5/metabolismo , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Comunicação Autócrina , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Quimiocina CCL5/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Receptor ErbB-2/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoAssuntos
Neoplasias do Colo , Neoplasias Colorretais , MicroRNAs , Fator de Transcrição E2F1 , HumanosRESUMO
Trastuzumab is the first-line targeted therapeutic drug for HER2-positive breast cancer, leading to improved overall survival. However, acquired resistance inevitably occurs. We aimed to identify, quantify, and assess the mechanisms of acquired resistance to trastuzumab. We established an acquired trastuzumab-resistant model in vitro from BT-474, a trastuzumab-sensitive, HER2-amplified breast-cancer cell line. A multi-omic strategy was implemented to obtain gene, proteome, and phosphoproteome signatures associated with acquired resistance to trastuzumab in HER2-positive breast cancer, followed by validation in human clinical samples. YAP1 dephosphorylation and TEAD2 overexpression were detected as significant alterations in the Hippo pathway in trastuzumab-resistant breast cancer. Because of the emerging role of these proteins as mediators of normal growth and tumorigenesis, we assessed the exogenous modulation of their activity, either by in vitro gene silencing or by pharmacological inhibition of the YAP1/TEAD complexes, both in vitro and in vivo. Moreover, we identified increased signaling through the Hippo pathway in human samples after progression following trastuzumab treatment. Finally, YAP1/TAZ nuclear accumulation in malignant cells in HER2 breast tumor was significantly associated with worse progression-free and overall survival in metastatic HER2-positive breast-cancer patients. Our results suggest the involvement of Hippo signaling in acquired trastuzumab resistance in breast cancer. Additionally, we provide novel evidence for a potential breast-cancer treatment strategy based on dual targeting of HER2 and Hippo pathway effectors, which may improve the antitumor activity of trastuzumab and help overcome resistance.
RESUMO
The increasing number of recently published works regarding the role of circular RNAs (circRNAs) in oral cancer highlights the key contribution of this novel class of endogenous noncoding RNAs as regulators of critical signaling pathways and their clinical value as novel biomarkers. This review summarizes and puts into context the existing literature in order to clarify the relevance of circRNAs as novel mediators of oral cancer pathogenesis as well as their potential usefulness as predictors of clinical outcome and response to therapy in this disease.