Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 997, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307851

RESUMO

In the context of continuous emergence of SARS-CoV-2 variants of concern (VOCs), one strategy to prevent the severe outcomes of COVID-19 is developing safe and effective broad-spectrum vaccines. Here, we present preclinical studies of a RBD vaccine derived from the Gamma SARS-CoV-2 variant adjuvanted with Alum. The Gamma-adapted RBD vaccine is more immunogenic than the Ancestral RBD vaccine in terms of inducing broader neutralizing antibodies. The Gamma RBD presents more immunogenic B-cell restricted epitopes and induces a higher proportion of specific-B cells and plasmablasts than the Ancestral RBD version. The Gamma-adapted vaccine induces antigen specific T cell immune responses and confers protection against Ancestral and Omicron BA.5 SARS-CoV-2 challenge in mice. Moreover, the Gamma RBD vaccine induces higher and broader neutralizing antibody activity than homologous booster vaccination in mice previously primed with different SARS-CoV-2 vaccine platforms. Our study indicates that the adjuvanted Gamma RBD vaccine is highly immunogenic and a broad-spectrum vaccine candidate.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , Anticorpos Amplamente Neutralizantes , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinas de Subunidades Antigênicas , Adjuvantes Imunológicos , Epitopos de Linfócito B , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
2.
PLoS Pathog ; 19(12): e1011877, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38127952

RESUMO

Shiga-toxin producing Escherichia coli (STEC) infections can cause from bloody diarrhea to Hemolytic Uremic Syndrome. The STEC intestinal infection triggers an inflammatory response that can facilitate the development of a systemic disease. We report here that neutrophils might contribute to this inflammatory response by secreting Interleukin 1 beta (IL-1ß). STEC stimulated neutrophils to release elevated levels of IL-1ß through a mechanism that involved the activation of caspase-1 driven by the NLRP3-inflammasome and neutrophil serine proteases (NSPs). Noteworthy, IL-1ß secretion was higher at lower multiplicities of infection. This secretory profile modulated by the bacteria:neutrophil ratio, was the consequence of a regulatory mechanism that reduced IL-1ß secretion the higher were the levels of activation of both caspase-1 and NSPs, and the production of NADPH oxidase-dependent reactive oxygen species. Finally, we also found that inhibition of NSPs significantly reduced STEC-triggered IL-1ß secretion without modulating the ability of neutrophils to kill the bacteria, suggesting NSPs might represent pharmacological targets to be evaluated to limit the STEC-induced intestinal inflammation.


Assuntos
Infecções por Escherichia coli , Escherichia coli O157 , Síndrome Hemolítico-Urêmica , Interleucina-1beta , Escherichia coli Shiga Toxigênica , Humanos , Caspases , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/microbiologia , Neutrófilos , Interleucina-1beta/metabolismo
3.
Nat Commun ; 14(1): 4551, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507392

RESUMO

A Gamma Variant RBD-based aluminum hydroxide adjuvanted vaccine called ARVAC CG was selected for a first in human clinical trial. Healthy male and female participants (18-55 years old) with a complete COVID-19-primary vaccine scheme were assigned to receive two intramuscular doses of either a low-dose or a high-dose of ARVAC CG. The primary endpoint was safety. The secondary objective was humoral immunogenicity. Cellular immune responses were studied as an exploratory objective. The trial was prospectively registered in PRIISA.BA (Registration Code 6564) and ANMAT and retrospectively registered in ClinicalTrials.gov (NCT05656508). Samples from participants of a surveillance strategy implemented by the Ministry of Health of the Province of Buenos Aires that were boosted with BNT162b2 were also analyzed to compare with the booster effect of ARVAC CG. ARVAC CG exhibits a satisfactory safety profile, a robust and broad booster response of neutralizing antibodies against the Ancestral strain of SARS-CoV-2 and the Gamma, Delta, Omicron BA.1 and Omicron BA.5 variants of concern and a booster effect on T cell immunity in individuals previously immunized with different COVID-19 vaccine platforms.


Assuntos
COVID-19 , Vacinas , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2
4.
Front Immunol ; 13: 844837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35296091

RESUMO

In this work, we evaluated recombinant receptor binding domain (RBD)-based vaccine formulation prototypes with potential for further clinical development. We assessed different formulations containing RBD plus alum, AddaS03, AddaVax, or the combination of alum and U-Omp19: a novel Brucella spp. protease inhibitor vaccine adjuvant. Results show that the vaccine formulation composed of U-Omp19 and alum as adjuvants has a better performance: it significantly increased mucosal and systemic neutralizing antibodies in comparison to antigen plus alum, AddaVax, or AddaS03. Antibodies induced with the formulation containing U-Omp19 and alum not only increased their neutralization capacity against the ancestral virus but also cross-neutralized alpha, lambda, and gamma variants with similar potency. Furthermore, the addition of U-Omp19 to alum vaccine formulation increased the frequency of RBD-specific geminal center B cells and plasmablasts. Additionally, U-Omp19+alum formulation induced RBD-specific Th1 and CD8+ T-cell responses in spleens and lungs. Finally, this vaccine formulation conferred protection against an intranasal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenge of K18-hACE2 mice.


Assuntos
Adjuvantes Imunológicos/metabolismo , Linfócitos B/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Brucella/metabolismo , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Centro Germinativo/imunologia , SARS-CoV-2/fisiologia , Compostos de Alúmen/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais , Formação de Anticorpos , Proteínas da Membrana Bacteriana Externa/imunologia , Brucella/imunologia , Resistência à Doença , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Glicoproteína da Espícula de Coronavírus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA