Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 193(12): 3127-34, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21478343

RESUMO

The glycerol oxidative pathway of Clostridium butyricum VPI 1718 plays an important role in glycerol dissimilation. We isolated, sequenced, and characterized the region coding for the glycerol oxidation pathway. Five open reading frames (ORFs) were identified: dhaR, encoding a putative transcriptional regulator; dhaD (1,142 bp), encoding a glycerol dehydrogenase; and dhaK (995 bp), dhaL (629 bp), and dhaM (386 bp), encoding a phosphoenolpyruvate (PEP)-dependent dihydroxyacetone (DHA) kinase enzyme complex. Northern blot analysis demonstrated that the last four genes are transcribed as a 3.2-kb polycistronic operon only in glycerol-metabolizing cultures, indicating that the expression of this operon is regulated at the transcriptional level. The transcriptional start site of the operon was determined by primer extension, and the promoter region was deduced. The glycerol dehydrogenase activity of DhaD and the PEP-dependent DHA kinase activity of DhaKLM were demonstrated by heterologous expression in different Escherichia coli mutants. Based on our complementation experiments, we proposed that the HPr phosphoryl carrier protein and His9 residue of the DhaM subunit are involved in the phosphoryl transfer to dihydroxyacetone-phosphate. DhaR, a potential regulator of this operon, was found to contain conserved transmitter and receiver domains that are characteristic of two-component systems present in the AraC family. To the best of our knowledge, this is the first molecular characterization of a glycerol oxidation pathway in a Gram-positive bacterium.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium butyricum/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicerol/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Família Multigênica , Oxirredução , Transcrição Gênica
2.
Proc Natl Acad Sci U S A ; 100(9): 5010-5, 2003 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12704244

RESUMO

The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol dehydratase and its activator protein. The deduced proteins DhaB1 and DhaB2, with calculated molecular masses of 88,074 and 34,149 Da, respectively, showed no homology with the known glycerol dehydratases that are all B12 dependent but significant similarity with the pyruvate formate lyases and pyruvate formate lyases activating enzymes and their homologues. The 1,158-bp dhaT gene codes for a 1,3-PD dehydrogenase with a calculated molecular mass of 41,558 Da, revealing a high level of identity with other DhaT proteins from natural 1,3-PD producers. The expression of the 1,3-PD operon in C. butyricum is regulated at the transcriptional level, and this regulation seems to involve a two-component signal transduction system DhaASDhaA, which may have a similar function to DhaR, a transcriptional regulator found in other natural 1,3-PD producers. The discovery of a glycerol dehydratase, coenzyme B12 independent, should significantly influence the development of an economical vitamin B12-free biological process for the production of 1,3-PD from renewable resources.


Assuntos
Oxirredutases do Álcool/genética , Clostridium/genética , Genes Bacterianos , Hidroliases/genética , Óperon , Álcool Desidrogenase , Oxirredutases do Álcool/química , Sequência de Aminoácidos , Clostridium/enzimologia , Escherichia coli/genética , Fermentação , Hidroliases/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA