RESUMO
53BP1 is recruited to chromatin in the vicinity of DNA double-strand breaks (DSBs). We identify the nuclear kinesin, KIF18B, as a 53BP1-interacting protein and define its role in 53BP1-mediated DSB repair. KIF18B is a molecular motor protein involved in destabilizing astral microtubules during mitosis. It is primarily nuclear throughout the interphase and is constitutively chromatin bound. Our observations indicate a nuclear function during the interphase for a kinesin previously implicated in mitosis. We identify a central motif in KIF18B, which we term the Tudor-interacting motif (TIM), because of its interaction with the Tudor domain of 53BP1. TIM enhances the interaction between the 53BP1 Tudor domain and dimethylated lysine 20 of histone H4. TIM and the motor function of KIF18B are both required for efficient 53BP1 focal recruitment in response to damage and for fusion of dysfunctional telomeres. Our data suggest a role for KIF18B in efficient 53BP1-mediated end-joining of DSBs.
Assuntos
Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Cinesinas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células HEK293 , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilação , Ligação Proteica , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/químicaRESUMO
The variant histone H3.3 is incorporated into the genome in a transcription-dependent manner. This histone is thus thought to play a role in epigenetic regulation. However, our understanding of how H3.3 controls gene expression and epigenome landscape has remained incomplete. This is partly because precise localization of H3.3 in the genome has been difficult to decipher particularly for cells in vivo To circumvent this difficulty, we generated knockin mice, by homologous recombination, to replace both of the two H3.3 loci (H3f3a and H3f3b) with the hemagglutinin-tagged H3.3 cDNA cassette, which also contained a GFP gene. We show here that the hemagglutinin-tagged H3.3 and GFP are expressed in the majority of cells in all adult tissues tested. ChIP-seq data, combined with RNA-seq, revealed a striking correlation between the level of transcripts and that of H3.3 accumulation in expressed genes. Finally, we demonstrate that H3.3 deposition is markedly enhanced upon stimulation by interferon on interferon-stimulated genes, highlighting transcription-coupled H3.3 dynamics. Together, these H3.3 knockin mice serve as a useful experimental model to study epigenome regulation in development and in various adult cells in vivo.
Assuntos
Epigênese Genética , Loci Gênicos , Genoma , Histonas , Animais , Técnicas de Introdução de Genes , Histonas/genética , Histonas/metabolismo , Humanos , CamundongosRESUMO
The role of the histone chaperone SPT6 in mammalian cells is not fully understood. Here, we investigated the involvement of SPT6 in type I interferon (IFN)-induced transcription in murine fibroblasts. In RNA-seq analysis, Spt6 siRNA attenuates about half of ~ 200 IFN-stimulated genes (ISGs), while not affecting housekeeping genes. ISGs with high mRNA induction are more susceptible to Spt6 siRNA than those with lower levels of induction. ChIP analysis shows that SPT6 is recruited to highly inducible, Spt6 siRNA-sensitive ISGs, but not to other siRNA-insensitive ISGs. Furthermore, SPT6 recruitment is abrogated in cells lacking the histone methyltransferase NSD2. In co-IP experiments, SPT6 interacts with NSD2. In summary, SPT6 facilitates IFN-induced transcription, highlighting its critical role in gene activation.
Assuntos
Regulação da Expressão Gênica/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Interferon Tipo I/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Histona-Lisina N-Metiltransferase/metabolismo , Interferon Tipo I/metabolismo , Camundongos , Ligação Proteica , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismoRESUMO
Actively transcribed genes are enriched with the histone variant H3.3. Although H3.3 deposition has been linked to transcription, mechanisms controlling this process remain elusive. We investigated the role of the histone methyltransferase Wolf-Hirschhorn syndrome candidate 1 (WHSC1) (NSD2/MMSET) in H3.3 deposition into interferon (IFN) response genes. IFN treatment triggered robust H3.3 incorporation into activated genes, which continued even after cessation of transcription. Likewise, UV radiation caused H3.3 deposition in UV-activated genes. However, in Whsc1(-/-) cells IFN- or UV-triggered H3.3 deposition was absent, along with a marked reduction in IFN- or UV-induced transcription. We found that WHSC1 interacted with the bromodomain protein 4 (BRD4) and the positive transcription elongation factor b (P-TEFb) and facilitated transcriptional elongation. WHSC1 also associated with HIRA, the H3.3-specific histone chaperone, independent of BRD4 and P-TEFb. WHSC1 and HIRA co-occupied IFN-stimulated genes and supported prolonged H3.3 incorporation, leaving a lasting transcriptional mark. Our results reveal a previously unrecognized role of WHSC1, which links transcriptional elongation and H3.3 deposition into activated genes through two molecularly distinct pathways.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Chaperonas de Histonas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Chaperonas de Histonas/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Interferon beta/farmacologia , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Raios UltravioletaRESUMO
RNA polymerase II (Pol II) and the pausing complex, NELF and DSIF, are detected near the transcription start site (TSS) of many active and silent genes. Active transcription starts when the pause release factor P-TEFb is recruited to initiate productive elongation. However, the mechanism of P-TEFb recruitment and regulation of NELF/DSIF during transcription is not fully understood. We investigated this question in interferon (IFN)-stimulated transcription, focusing on BRD4, a BET family protein that interacts with P-TEFb. Besides P-TEFb, BRD4 binds to acetylated histones through the bromodomain. We found that BRD4 and P-TEFb, although not present prior to IFN treatment, were robustly recruited to IFN-stimulated genes (ISGs) after stimulation. Likewise, NELF and DSIF prior to stimulation were hardly detectable on ISGs, which were strongly recruited after IFN treatment. A shRNA-based knockdown assay of NELF revealed that it negatively regulates the passage of Pol II and DSIF across the ISGs during elongation, reducing total ISG transcript output. Analyses with a BRD4 small-molecule inhibitor showed that IFN-induced recruitment of P-TEFb and NELF/DSIF was under the control of BRD4. We suggest a model where BRD4 coordinates both positive and negative regulation of ISG elongation.
Assuntos
Interferon beta/metabolismo , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3 , Animais , Azepinas/farmacologia , Linhagem Celular , Quinase 9 Dependente de Ciclina/metabolismo , Camundongos , Proteínas Nucleares/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Polimerase II , RNA Interferente Pequeno , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Triazóis/farmacologiaRESUMO
The human RAD54B protein is a paralog of the RAD54 protein, which plays important roles in homologous recombination. RAD54B contains an N-terminal region outside the SWI2/SNF2 domain that shares less conservation with the corresponding region in RAD54. The biochemical roles of this region of RAD54B are not known, although the corresponding region in RAD54 is known to physically interact with RAD51. In the present study, we have biochemically characterized an N-terminal fragment of RAD54B, consisting of amino acid residues 26-225 (RAD54B(26-225)). This fragment formed a stable dimer in solution and bound to branched DNA structures. RAD54B(26-225) also interacted with DMC1 in both the presence and absence of DNA. Ten DMC1 segments spanning the entire region of the DMC1 sequence were prepared, and two segments, containing amino acid residues 153-214 and 296-340, were found to directly bind to the N-terminal domain of RAD54B. A structural alignment of DMC1 with the Methanococcus voltae RadA protein, a homolog of DMC1 in the helical filament form, indicated that these RAD54B-binding sites are located near the ATP-binding site at the monomer-monomer interface in the DMC1 helical filament. Thus, RAD54B binding may affect the quaternary structure of DMC1. These observations suggest that the N-terminal domain of RAD54B plays multiple roles of in homologous recombination.
Assuntos
DNA Helicases/química , Proteínas Nucleares/química , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Rad51 Recombinase/metabolismoRESUMO
The process of homologous recombination is indispensable for both meiotic and mitotic cell division, and is one of the major pathways for double-strand break (DSB) repair. The human Rad54B protein, which belongs to the SWI2/SNF2 protein family, plays a role in homologous recombination, and may function with the Dmc1 recombinase, a meiosis-specific Rad51 homolog. In the present study, we found that Rad54B enhanced the DNA strand-exchange activity of Dmc1 by stabilizing the Dmc1-single-stranded DNA (ssDNA) complex. Therefore, Rad54B may stimulate the Dmc1-mediated DNA strand exchange by stabilizing the nucleoprotein filament, which is formed on the ssDNA tails produced at DSB sites during homologous recombination.
Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Recombinases/metabolismo , Recombinação Genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestrutura , DNA Helicases/isolamento & purificação , DNA Helicases/ultraestrutura , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/ultraestrutura , Rad51 Recombinase/metabolismo , Recombinases/química , Recombinases/ultraestruturaRESUMO
The Rad51B, Rad51C, Rad51D and Xrcc2 proteins are Rad51 paralogs, and form a complex (BCDX2 complex) in mammalian cells. Mutant cells defective in any one of the Rad51-paralog genes exhibit spontaneous genomic instability and extreme sensitivity to DNA-damaging agents, due to inefficient recombinational repair. Therefore, the Rad51 paralogs play important roles in the maintenance of genomic integrity through recombinational repair. In the present study, we examined the DNA-binding preference of the human BCDX2 complex. Competitive DNA-binding assays using seven types of DNA substrates, single-stranded DNA (ssDNA), double-stranded DNA, 5'- and 3'-tailed duplexes, nicked duplex DNA, Y-shaped DNA and a synthetic Holliday junction, revealed that the BCDX2 complex preferentially bound to the two DNA substrates with branched structures (the Y-shaped DNA and the synthetic Holliday junction). Furthermore, the BCDX2 complex catalyzed the strand-annealing reaction between a long linear ssDNA (1.2 kb in length) and its complementary circular ssDNA. These properties of the BCDX2 complex may be important for its roles in the maintenance of chromosomal integrity.