Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909579

RESUMO

Understanding the spatial distribution of plant available soil nutrients and influencing soil properties and delineation soil nutrient management zones (MZs) are important for implementing precision nutrient management options (PNMO) in an area to achieve maintainable crop production. We assessed spatial distribution pattern of plant available sulphur (S) (PAS), boron (B) (PAB), zinc (PAZn), manganese (PAMn), iron (PAFe), and copper (PACu), and soil organic carbon (SOC), pH, and electrical conductivity (EC) to delineate soil nutrients MZs in northeastern region of India. A total of 17,471 representative surface (0-15 cm depth) soil samples were collected from the region, processed, and analysed for above-mentioned soil parameters. The values of PAS (0.22-99.2 mg kg-1), PAB (0.01-6.45 mg kg-1), PAZn (0.05-13.9 mg kg-1), PAMn (0.08-158 mg kg-1), PAFe (0.50-472 mg kg-1), PACu (0.01-19.2 mg kg-1), SOC (0.01-5.80%), pH (3.19-7.56) and EC (0.01-1.66 dS m-1) varied widely with coefficient of variation of 15.5-108%. The semivariogram analysis highlighted exponential, Gaussian and stable best fitted models for soil parameters with weak (PACu), moderate (PAB, PAZn, PAFe, SOC, pH, and EC) and strong (PAS, and PAMn) spatial dependence. The ordinary kriging interpolation revealed different distribution patterns of soil parameters. About 14.8, 27.5, and 3.40% area of the region had PAS of ≤15.0 mg kg-1, PAB of ≤0.50 mg kg-1, and PAZn of had ≤0.90 mg kg-1, respectively. About 67.5, and 32.5% area had SOC content >1.00 and < 1.00%, respectively. Soil pH was ≤5.50, and >5.50 to ≤6.50 in 41.7 and 40.3% area of the region, respectively. The techniques of principal component analysis and fuzzy c-mean algorithm clustering produced 6 MZs of the region with different areas and values of soil parameters. The MZs had different levels of deficiency pertaining to PAS, PAB, and PAZn. The produced MZ maps could be used for managing PAS, PAB, PAZn, SOC and soil pH in order to implement PNMO. The study highlighted the usefulness of MZ delineation technique for implementation of PNMO in different cultivated areas for sustainable crop production.


Assuntos
Solo , Solo/química , Índia , Zinco/análise , Nutrientes/análise , Ferro/análise , Boro/análise , Análise de Componente Principal , Análise por Conglomerados , Lógica Fuzzy , Manganês/análise
2.
Curr Microbiol ; 81(5): 137, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597994

RESUMO

Fermented foods have been recognized as a source of probiotic bacteria which can have a positive effect when administered to humans and animals. Discovering new probiotics in fermented food products poses a global economic and health importance. In this study, we investigated the antimicrobial and probiotic potential of lactobacilli isolated from fermented beverages produced traditionally by ethnic groups in Northeast India. Out of thirty Lactobacilli, fifteen exhibited strong antimicrobial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter aerogenes with significant anti-biofilm and anti-quorum sensing activity. These isolates also showed characteristics associated with probiotic properties, such as tolerance to low pH and bile salts, survival in the gastric tract, auto-aggregation, and hydrophobicity without exhibiting hemolysis formation or resistance to certain antibiotics. The isolates were identified using gram staining, biochemical tests, and 16S rDNA sequencing. They exhibited probiotic potential, broad-spectrum of antibacterial activity, promising anti-biofilm, anti-quorum sensing activity, non-hemolytic, and tolerance to acidic pH and bile salts. Overall, four specific Lactobacillus isolates, Lactiplantibacillus plantarum BRD3A and Lacticaseibacillus paracasei RB10OW from fermented rice-based beverage, and Lactiplantibacillus plantarum RB30Y and Lacticaseibacillus paracasei MP11A from traditional local curd demonstrated potent antimicrobial and probiotic properties. These findings suggest that these lactobacilli isolates from fermented beverages have the potential to be used as probiotics with therapeutic benefits, highlighting the importance of traditional fermented foods for promoting gut health and infectious disease management.


Assuntos
Anti-Infecciosos , Lactobacillus , Animais , Humanos , Bebidas Fermentadas , Antibacterianos/farmacologia , Ácidos e Sais Biliares
3.
Front Microbiol ; 15: 1357818, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628861

RESUMO

Lactiplantibacillus plantarum BRD3A was isolated from Atingba, a traditional fermented rice-based beverage of Manipur. Its genomic sequence has 13 contigs and its genome size is 3,320,817 bp with a guanine-cytosine (GC) ratio of 44.6%. It comprises 3185 genes including 3112 coding sequences (CDSs), 73 RNAs (including 66 tRNAs and others), and one clustered regularly interspaced short palindromic repeat (CRISPR) array. A comparative and phylogenetic analysis with the Lp. plantarum genome shows that this strain has close similarity with other Lp. plantarum strains and about 99% average nucleotide identity. Functional annotation using evolutionary genealogy of genes-non-supervised orthologous groups (EggNOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) reveals genes associated with various biological processes such as metabolism, genetic information processing, and transport functions. Furthermore, the strain harbors bacteriocins like plantaricin E, Plantaricin F, and Enterocin X categorized under class IIb by the BAGEL4 database, indicating its potential antimicrobial properties. Additionally, AntiSMASH web server predicted four secondary regions-T3PKS, terpene, cyclic lactone inducer, and ribosomally synthesized and post-translationally modified peptide (RiPP)-suggesting an even higher antimicrobial potential. We validated the antimicrobial activity of Lp. plantarum BRD3A through in vitro experiments in which it exhibited promising bactericidal effects on methicillin-resistant Staphylococcus aureus, inhibiting their biofilm growth. These findings indicate the potential of Lp. plantarum BRD3A to be used as an alternative to conventional antibiotics.

4.
Sci Total Environ ; 904: 166630, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37643712

RESUMO

As the global population and living standards rise, it pushes the demand for basic amenities like food, health, and energy resources. Additionally, manufacturing automation has led to mass production and consumption, triggering waste production. The existing linear economy approach has led to increasing waste production and resource depletion, posing significant environmental and public health threats. To overcome these impediments, an alternative model called the circular economy concept has gained popularity in the global industry community. This closed-loop, restorative, waste-free concept has the potential to protect the environment and improve economics by reducing energy and resource consumption. Thus, major impetus should be given to strengthening the backbone of the economy where tools such as green technologies, decarbonization strategies, bio refinery processes, material flow analysis, life cycle assessment, ecological footprints (water, carbon, and material), substance flow analysis, circularity index, eco-designing, bioresource management, new business models, and policy play an essential role in the areas of socio-economic sustainability, ecological facts, and industrial aspects to enhance socio-economic growth in a sustainable manner. Sectoral awareness, collaborations, and partnerships among the Government, stakeholders, policymakers, and competent authorities are also essential to enabling circularity within the eco-systems.

5.
Curr Microbiol ; 80(2): 64, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36600152

RESUMO

A thermophilic cellulase-producing bacterium, Bacillus velezensis strain MRC 5958, from Bakra natural hot Springs, India was characterized through genome sequencing. It has a genome size of 4,467,129 bp and a GC content of 45.7%. A cellulase purified from its fermentation broth has a molecular weight of about 18 kDa. The optimum temperature and pH for carboxymethyl cellulase activity were at 55 °C and pH ~ 7.0. The enzyme is stable over a wide range of temperatures from 30 °C to 70 °C with maximum activity observed at 48 h of incubation. The strain produces cellulase on alkali-treated sugarcane bagasse, rice straw, rice husk, rice bran, and sawdust. The sugarcane bagasse exhibited the most effective carbon source for cellulase production at (85 U/ml) followed by rice bran (68 U/ml), rice husk (60 U/ml), rice straw (48 U/ml), and sawdust (39 U/ml). Therefore, this strain can be a potential thermostable cellulase-producing candidate for converting the waste biomass into biofuel and other industrial enzymes.


Assuntos
Celulase , Fontes Termais , Saccharum , Celulose , Fontes Termais/microbiologia , Celulase/química , Temperatura
6.
Life (Basel) ; 14(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38255644

RESUMO

The Badami Caves are a significant example of ancient Indian rock-cut architecture, dating back to the 6th century. These caves are situated in the Malaprabha River valley and are part of the candidate UNESCO World Heritage Site known as the "Evolution of Temple Architecture-Aihole-Badami-Pattadakal", which is considered to be the cradle of temple architecture in India. Our study aimed to investigate the diversity, distribution, and biodeterioration phenomena of the fungal communities present on the cave surfaces. The study also conducted a comprehensive analysis of fungal biodeterioration on the cave carvings. Utilizing specialized techniques, the dissolution of calcite, alterations in pH levels, and biomineralization capabilities of isolated fungal strains were monitored. Additionally, this study analyzed fungal acid production using high-performance liquid chromatography (HPLC). Our findings revealed that the major genera of fungi found on the cave surfaces included Acremonium, Curvularia, Cladosporium, Penicillium, and Aspergillus. These isolated fungi were observed to produce acids, leading to the dissolution of calcium carbonate and subsequent decrease in pH values. Notably, the dominant genus responsible for acid production and the promotion of biomineralization was Aspergillus. These discoveries provide valuable insight into the ecology and functions of fungi inhabiting stone surfaces, contributing to our understanding of how to preserve and protect sculptures from biodeterioration.

7.
Sci Rep ; 12(1): 18861, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344671

RESUMO

Antimicrobial resistance has been developing fast and incurring a loss of human life, and there is a need for new antimicrobial agents. Naturally occurring antimicrobial peptides offer the characteristics to counter AMR because the resistance development is low or no resistance. Antimicrobial peptides from Paenibacillus peoriae IBSD35 cell-free supernatant were salted out and purified using chromatography and characterized with liquid chromatography-tandem-mass spectrometry. The extract has shown a high and broad spectrum of antimicrobial activity. Combining the strain IBSD35 genome sequence with its proteomic data enabled the prediction of biosynthetic gene clusters by connecting the peptide from LC-MS/MS data to the gene that encode. Antimicrobial peptide databases offered a platform for the effective search, prediction, and design of AMPs and expanded the studies on their isolation, structure elucidation, biological evaluation, and pathway engineering. The genome-based taxonomy and comparisons have shown that P. peoriae IBSD35 is closely related to Paenibacillus peoriae FSL J3-0120. P. peoriae IBSD35 harbored endophytic trait genes and nonribosomal peptide synthases biosynthetic gene clusters. The comparative genomics revealed evolutionary insights and facilitated the discovery of novel SMs using proteomics from the extract of P. peoriae IBSD35. It will increase the potential to find novel bio-molecules to counter AMR.


Assuntos
Anti-Infecciosos , Paenibacillus , Humanos , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Paenibacillus/genética , Anti-Infecciosos/farmacologia , Antibacterianos/química , Genômica
8.
J Biosci ; 472022.
Artigo em Inglês | MEDLINE | ID: mdl-36222136

RESUMO

Capsicum chinense is the chilli species containing the highest amount of capsaicin, and is an important traditional spice crop of Northeast India. Capsaicinoids derived from C. chinense are used in anticancer and anti-obesity treatments, as temperature regulators, in pain therapy, and as antioxidants. The current production and yield are very low due to the lack of organized cultivation and scientific inputs, and various plant diseases. Synthetic pesticides are frequently applied to boost yields, which creates potential risks to the environment, crops, and humans. The use of plant growth-promoting rhizobacteria is an alternative strategy in crop disease management to reduce the dependency on agrochemicals, which have detrimental effects on the environment. Lysinibacillus xylanilyticus t26 isolated from the C. chinense rhizosphere has shown good prospects in plant growth promotion and biocontrol. It showed strong antagonistic activity against Pythium ultimum ITCC 1650, Rhizoctonia solani ITCC 6491, and Fusarium oxysporum ITCC 6246. The draft genome sequencing of L. xylanilyticus t26 yielded a total of 5.69 Mbp with a G+C content of 36.80%. Genome analysis revealed that L. xylanilyticus t26 is very similar to L. xylanilyticus MH683160.1, and is phylogenetically related to L. xylanilyticus IBBPo7. Bioinformatics analysis predicted that it harbored type III polyketides, non-ribosomal peptides, terpenes, and lantibiotics including cerecidin, bacteriocins, siderophores, and thiopeptides, which are important traits of rhizobacteria for the utilization of minerals and to compete with other microbes for food. The strain t26 is a potential biocontrol agent for soil-borne fungal diseases. In this study, we derived the possible siderophore production pathways through the analysis of L. xylanilyticus t26 draft genome and plant growth response bioassays. The availability of genome data provides information that this draft genome harbored a siderophore BGC, which is 33% similar to petrobactin.


Assuntos
Bacteriocinas , Capsicum , Praguicidas , Policetídeos , Agroquímicos/metabolismo , Bacillaceae , Bactérias/genética , Bacteriocinas/metabolismo , Capsaicina/metabolismo , Capsicum/metabolismo , Humanos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Policetídeos/metabolismo , Rizosfera , Sideróforos , Solo , Microbiologia do Solo , Terpenos/metabolismo
9.
PLoS One ; 16(10): e0258607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34648570

RESUMO

Staphylococcus aureus and Methicillin-resistant S. aureus (MRSA) remains one of the major concerns of healthcare associated and community-onset infections worldwide. The number of cases of treatment failure for infections associated with resistant bacteria is on the rise, due to the decreasing efficacy of current antibiotics. Notably, Acrophialophora levis, a thermophilous fungus species, showed antibacterial activity, namely against S. aureus and clinical MRSA strains. The ethyl acetate extract of culture filtrate was found to display significant activity against S. aureus and MRSA with a minimum inhibitory concentration (MIC) of 1 µg/mL and 4 µg/mL, respectively. Scanning electron micrographs demonstrated drastic changes in the cellular architecture of metabolite treated cells of S. aureus and an MRSA clinical isolate. Cell wall disruption, membrane lysis and probable leakage of cytoplasmic are hallmarks of the antibacterial effect of fungal metabolites against MRSA. The ethyl acetate extract also showed strong antioxidant activity using two different complementary free radicals scavenging methods, DPPH and ABTS with efficiency of 55% and 47% at 1 mg/mL, respectively. The total phenolic and flavonoid content was found to be 50 mg/GAE and 20 mg/CAE, respectively. More than ten metabolites from different classes were identified: phenolic acids, phenylpropanoids, sesquiterpenes, tannins, lignans and flavonoids. In conclusion, the significant antibacterial activity renders this fungal strain as a bioresource for natural compounds an interesting alternative against resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Fatores Biológicos/farmacologia , Staphylococcus aureus Resistente à Meticilina/ultraestrutura , Sordariales/química , Acetatos/química , Antibacterianos/química , Antioxidantes/química , Fatores Biológicos/química , Flavonoides/isolamento & purificação , Hidroxibenzoatos/isolamento & purificação , Índia , Lignanas/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Sesquiterpenos/isolamento & purificação , Taninos/isolamento & purificação
10.
Infect Genet Evol ; 83: 104325, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32325193

RESUMO

Japanese encephalitis virus (JEV) comes under the family Flaviviridae and genus flavivirus. Pigs act as reservoir and amplifying intermediate host for JEV. The current investigation was conducted to understand the prevalence of JEV infection in pigs in three different geographical sites in India (Odisha, Assam and Manipur). Total 857 serum samples were tested by ELISA and RT-PCR, while only RT-PCR was performed in case of 275 tonsils tissues for detection of JEV. It was observed that JEV prevalence was highest in Manipur (positive 39, 25.5% in serum and 10% in tonsil) but lower in Assam (positive 15, 3.8% in serum and 0% in tonsils) and Odisha (positive 7, 1.5% in serum and 3.7% in tonsils). Genotype III (GIII) of JEV was the dominant genotype. Further, analysis of E gene revealed sporadic mutations of S83G, H76P, E78Q, C55S, and S64W along with two consistent mutations V46S and V51I in GIII. Whereas, a single mutation S118N was observed in the GI strain. In conclusion, the high JE virus infection rate of pig in the current locations suggests the need for continuous surveillance of this virus in pigs which will ultimately help to adopt an effective control strategy to prevent the spread of JE infection to human.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/veterinária , Doenças dos Suínos/epidemiologia , Animais , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/diagnóstico , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/virologia , Ensaio de Imunoadsorção Enzimática , Genótipo , Índia/epidemiologia , Epidemiologia Molecular , Filogenia , Prevalência , Suínos , Doenças dos Suínos/virologia
11.
Bioresour Technol ; 241: 1168-1172, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28578806

RESUMO

In this study, fungi isolated from less explored forest soil ecosystem of Northeast India were studied for the production of potential antimicrobial metabolites (AMM). Out of the 68 fungi isolated from forest soil of Manipur, 7 of them showed AMA against the test pathogens. Among them, Aspergillus terreus (IBSD-F4) showed the most significant activity against Staphylococcus aureus (ATCC-25923), Bacillus anthracis (IBSD-C370), Pseudomonas fluorescens (ATCC-13525), Salmonella typhimurium (ATCC-14028), Escherichia coli (ATCC-25922) and Candida albicans (ATCC-10231). The active metabolite was harvested from the fermentation broth of Aspergillus terreus and purified by column chromatography and semi preparative-HPLC. The compound was identified as 'Sclerotionigrin A' on the basis of UV-vis spectra, MS and NMR analyses. This compound was reported for the first time from A. terreus. The study highlights, the importance of exploring microbes from forest soil for identification of bioactive metabolites for future drug development.


Assuntos
Anti-Infecciosos , Ecossistema , Florestas , Staphylococcus aureus , Fermentação , Fungos , Índia , Testes de Sensibilidade Microbiana , Mineração , Solo
12.
Bioinformation ; 9(2): 106-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390355

RESUMO

We investigated the occurrence and genetic diversity of Trichoderma and Hypocrea in Manipur which lies in the Indo-Burma biodiversity hot spot region. 65 Trichoderma isolates were identified at species level by morphological as well as sequence based analysis of the internal transcribed spacer region 1 and 4. Altogether 22 different species of Trichoderma and Hypocrea were found, of which Trichoderma harzianum represent the dominant species. Phylogenetic analysis reveals a clear cut distinction of strains isolated from various collection sites which further hints the need for detail study of Trichoderma on molecular level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA