Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Infect Dis Model ; 8(4): 1177-1189, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38074078

RESUMO

Low- and middle-income countries faced significant challenges in accessing COVID-19 vaccines during the early stages of the pandemic. In this study, we utilized an age-structured modeling approach to examine the implications of various vaccination strategies, vaccine prioritization, and vaccine rollout speeds in Thailand, an upper-middle-income country experiencing vaccine shortages during the early stages of the pandemic. The model directly compares the effectiveness of several vaccination strategies, including the heterologous vaccination where CoronaVac (CV) vaccine was administered as the first dose, followed by ChAdOx1 nCoV-19 (AZ) vaccine as the second dose, under varying disease transmission dynamics. We found that the traditional AZ homologous vaccination was more effective than the CV homologous vaccination, regardless of disease transmission dynamics. However, combining CV and AZ vaccines via either parallel homologous or heterologous vaccinations was more effective than relying solely on AZ homologous vaccination. Additionally, prioritizing vaccination for the elderly aged 60 years and above was the most effective way to reduce mortality when community transmission is well-controlled. On the other hand, prioritizing workers aged 20-59 was most effective in lowering COVID-19 cases, irrespective of the transmission dynamics. Lastly, despite the vaccine prioritization strategy, rapid vaccine rollout speeds were crucial in reducing COVID-19 infections and deaths. These findings suggested that in low- and middle-income countries where early access to high-efficacy vaccines might be limited, obtaining any accessible vaccines as early as possible and using them in parallel with other higher-efficacy vaccines might be a better strategy than waiting for and relying solely on higher-efficacy vaccines.

2.
Sci Rep ; 12(1): 17543, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266440

RESUMO

The isolation of infected individuals and quarantine of their contacts are usually employed to mitigate the transmission of SARS-CoV-2. Although 14-day isolation of infected individuals could effectively reduce the risk of subsequent transmission, it also substantially impacts the patient's psychological and emotional well-being. It is, therefore, vital to investigate how the isolation duration could be shortened when effective vaccines are available. Here, an individual-based modeling approach was employed to estimate the likelihood of secondary infections and the likelihood of an outbreak following the isolation of a primary case for a range of isolation periods. Our individual-based model integrated the viral loads and infectiousness profiles of vaccinated and unvaccinated infected individuals. The effects of waning vaccine-induced immunity against infection were also considered. By simulating the transmission of the SARS-CoV-2 Delta (B.1.617.2) variant in a community, we found that in the baseline scenario in which all individuals were unvaccinated and nonpharmaceutical interventions were not used, there was an approximately 3% chance that an unvaccinated individual would lead to at least one secondary infection after being isolated for 14 days, and a sustained chain of transmission could occur with a less than 1% chance. With the outbreak risk equivalent to that of the 14-day isolation in the baseline scenario, we found that the isolation duration could be shortened to 7.33 days (95% CI 6.68-7.98) if 75% of people in the community were fully vaccinated with the BNT162b2 vaccine within the last three months. In the best-case scenario in which all individuals in the community are fully vaccinated, isolation of Delta variant-infected individuals may no longer be necessary. However, to keep the outbreak risk lower than 1%, a booster vaccination may be necessary three months after full vaccination.


Assuntos
COVID-19 , Coinfecção , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacina BNT162 , Vacinação
3.
PLoS Negl Trop Dis ; 16(5): e0010397, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536861

RESUMO

Rabies is a fatal disease that has been a serious health concern, especially in developing countries. Although rabies is preventable by vaccination, the spread still occurs sporadically in many countries, including Thailand. Geographical structures, habitats, and behaviors of host populations are essential factors that may result in an enormous impact on the mechanism of propagation and persistence of the disease. To investigate the role of geographical structures on the transmission dynamics of canine rabies, we developed a stochastic individual-based model that integrates the exact configuration of buildings and roads. In our model, the spatial distribution of dogs was estimated based on the distribution of buildings, with roads considered to facilitate dog movement. Two contrasting areas with high- and low-risk of rabies transmission in Thailand, namely, Hatyai and Tepha districts, were chosen as study sites. Our modeling results indicated that the distinct geographical structures of buildings and roads in Hatyai and Tepha could contribute to the difference in the rabies transmission dynamics in these two areas. The high density of buildings and roads in Hatyai could facilitate more rabies transmission. We also investigated the impacts of rabies intervention, including reducing the dog population, restricting owned dog movement, and dog vaccination on the spread of canine rabies in these two areas. We found that reducing the dog population alone might not be sufficient for preventing rabies transmission in the high-risk area. Owned dog confinement could reduce more the likelihood of rabies transmission. Finally, a higher vaccination coverage may be required for controlling rabies transmission in the high-risk area compared to the low-risk area.


Assuntos
Doenças do Cão , Vacina Antirrábica , Raiva , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/prevenção & controle , Cães , Geografia , Humanos , Raiva/epidemiologia , Raiva/prevenção & controle , Raiva/veterinária , Vacinação/veterinária , Cobertura Vacinal
4.
Sci Rep ; 12(1): 2002, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35132106

RESUMO

Thailand was the first country reporting the first Coronavirus disease 2019 (COVID-19) infected individual outside mainland China. Here we delineated the course of the COVID-19 outbreak together with the timeline of the control measures and public health policies employed by the Thai government during the first wave of the COVID-19 outbreak in Thailand. Based on the comprehensive epidemiological data, we reconstructed the dynamics of COVID-19 transmission in Thailand using a stochastic modeling approach. Our stochastic model incorporated the effects of individual heterogeneity in infectiousness on disease transmission, which allows us to capture relevant features of superspreading events. We found that our model could accurately capture the transmission dynamics of the first COVID-19 epidemic wave in Thailand. The model predicted that at the end of the first wave, the number of cumulative confirmed cases was 3091 (95%CI: 2782-3400). We also estimated the time-varying reproduction number (Rt) during the first epidemic wave. We found that after implementing the nationwide interventions, the Rt in Thailand decreased from the peak value of 5.67 to a value below one in less than one month, indicating that the control measures employed by the Thai government during the first COVID-19 epidemic wave were effective. Finally, the effects of transmission heterogeneity and control measures on the likelihood of outbreak extinction were also investigated.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Epidemias/prevenção & controle , Modelos Estatísticos , SARS-CoV-2 , Adulto , COVID-19/prevenção & controle , COVID-19/virologia , Controle de Doenças Transmissíveis/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processos Estocásticos , Tailândia/epidemiologia , Adulto Jovem
5.
Front Vet Sci ; 8: 699352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490393

RESUMO

Rabies is a deadly zoonotic disease responsible for almost 60,000 deaths each year, especially in Africa and Asia including Thailand. Dogs are the major reservoirs for rabies virus in these settings. This study thus used the concept of knowledge, attitudes, and practices (KAP) to identify socioeconomic factors that contribute to the differences in the canine rabies occurrences in high and low-risk areas which were classified by a Generalized Additive Model (GAM). Multistage sampling was then applied to designate the study locations and a KAP-based questionnaire was used to retrieve data and relevant perspectives from the respondents. Based on the responses from 476 participants living across four regions of Thailand, we found that the knowledge of the participants was positively correlated with their behaviors but negatively associated with the attitudes. Participants who are male, younger, educated at the level of middle to high school, or raising more dogs are likely to have negative attitudes but good knowledge on rabies prevention and control whereas farmers with lower income had better attitudes regardless of their knowledge. We found that people in a lower socioeconomic status with a lack of knowledge are not willing to pay at a higher vaccine price. Public education is a key to change dog owners' behaviors. Related authorities should constantly educate people on how to prevent and control rabies in their communities. Our findings should be applicable to other countries with similar socioeconomic statuses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA