Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
RSC Adv ; 14(39): 28693-28702, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39257653

RESUMO

Zn(ii)-based anticancer drugs can be suitable alternatives to conventional Pt(ii)-based drugs because of the unique chemical properties of Zn(ii) and low toxicity. In this study, a new hexadentate and heteroleptic Zn(ii) complex ([Zn(bpy)2(OAc)2], 1) was prepared with a conventional N,N-donor ligand (2,2'-bipyridine) and a leaving group (OAc) and characterized via ESI-MS, UV-Vis, and FT-IR spectroscopy. Kinetic and mechanistic investigations of 1 were performed using two biologically relevant ligands (dl-penicillamine and l-cysteine) to understand its selectivity and reactivity. Substitution reactions were determined to be two-step processes in the associative activation mode. Bioactivity studies of 1 revealed moderate to strong DNA-binding, cleaving ability, and antimicrobial properties.

2.
Chemosphere ; 349: 140742, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38013027

RESUMO

Currently, scarcity/security of clean water and energy resources are the most serious problems worldwide. Industries use large volume of ground water and a variety of chemicals to manufacture the products and discharge large volume of wastewater into environment, which causes severe impacts on environment and public health. Fossil fuels are considered as major energy resources for electricity and transportation sectors, which release large amount of CO2 and micro/macro pollutants, leading to cause the global warming and public health hazards. Therefore, algae-bacterial consortium (A-BC) may be eco-friendly, cost-effective and sustainable alternative way to treat the industrial wastewaters (IWWs) with Bio-H2 production. A-BC has potential to reduce the global warming and eutrophication. It also protects environment and public health as it converts toxic IWWs into non or less toxic (biomass). It also reduces 94%, 90% and 50% input costs of nutrients, freshwater and energy, respectively during IWWs treatment and Bio-H2 production. Most importantly, it produce sustainable alternative (Bio-H2) to replace use of fossil fuels and fill the world's energy demand in eco-friendly manner. Thus, this review paper provides a detailed knowledge on industrial wastewaters, their pollutants and toxic effects on water/soil/plant/humans and animals. It also provides an overview on A-BC, IWWs treatment, Bio-H2 production, fermentation process and its enhancement methods. Further, various molecular and analytical techniques are also discussed to characterize the A-BC structure, interactions, metabolites and Bio-H2 yield. The significance of A-BC, recent update, challenges and future prospects are also discussed.


Assuntos
Poluentes Ambientais , Águas Residuárias , Humanos , Bactérias , Plantas , Combustíveis Fósseis , Biomassa , Água , Biocombustíveis
3.
Environ Technol ; : 1-11, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37440597

RESUMO

ABSTRACTAnaerobic digestion (AD) relies on the cooperation of specific microbial communities, making it susceptible to process disruptions that could impact biogas production. In this regard, this study presents a technological solution based on the Arduino platform, in the form of a simple online monitoring system that can track the produced biogas profile, named as biogas analyzer module (BAM). The applicability of the BAM focused on monitoring the biogas produced from sugarcane vinasse inoculated with sewage sludge biodigestion processed in mesophilic conditions (38 oC), in a pH range of 6.5-7.5, and following a three-stage operational model: (i) an adaptation (168 h), (ii) complete mixing (168 h), and (iii) bio-stimulation with glycerol (192 h). Then, the lab-made BAM was used to trace the produced biogas profile, which registered a total biogas volume of 8,719.86 cm3 and biomethane concentration of 95.79% (vol.), removing 90.8% (vol) of carbon dioxide (CO2) and 65.2% (vol) of hydrogen sulfide (H2S). In conclusion, the results ensured good accuracy and efficiency to the device created by comparisons with established standards (chromatographic and colorimetric methods), as well as the cost reduction. The developed device would likely be six times cheaper than what is available in the market.

4.
Bioresour Technol ; 387: 129560, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517710

RESUMO

The greener chemical and enzymatic pretreatments for lignocellulosic biomasses are portraying a crucial role owing to their recalcitrant nature. Traditional pretreatments lead to partial degradation of lignin and hemicellulose moieties from the pretreated biomass. But it still restricts the enzyme accessibility for the digestibility towards the celluloses and the interaction of lignin-enzymes, nonproductively. Moreover, incursion of certain special chemical treatments and other lignin sulfonation techniques to the enzymatic pretreatment (hybrid enzymatic pretreatment) enhances the lignin structural modification, solubilization of the hemicelluloses and both saccharification and fermentation processes (SAF). This article concentrates on recent developments in various chemical and hybrid enzymatic pretreatments on biomass materials with their mode of activities. Furthermore, the issues on strategies of the existing pretreatments towards their industrial applications are highlighted, which could lead to innovative ideas to overcome the challenges and give guideline for the researchers towards the lignocellulosic biorefineries.


Assuntos
Celulose , Lignina , Lignina/química , Celulose/metabolismo , Fermentação , Biomassa , Hidrólise
5.
Chemosphere ; 336: 139192, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37353172

RESUMO

Tannery wastewater (TWW) has high BOD, COD, TS and variety of pollutants like chromium, formaldehydes, biocides, oils, chlorophenols, detergents and phthalates etc. Besides these pollutants, TWW also rich source of nutrients like nitrogen, phosphorus, carbon and sulphur etc. that can be utilized by microalgae during their growth. Direct disposal of TWW into the environment may lead severe environmental and health threats, therefore it needs to be treated adequately. Microalgae are considered as an efficient microorganisms (fast growing, adaptability and strain robustness, high surface to volume ratio, energy saving) for remediation of wastewaters with simultaneous biomass recovery and generation of value-added products (VAPs) such as biofuels, biohydrogen, biopolymer, biofertilizer, pigments, bioethanol, bioactive compounds, nutraceutical etc. Most microalgae are photosynthetic and use CO2 and light energy to synthesise carbohydrate and reduces the emission of greenhouse gasses. Microalgae are also reported to remove heavy metals and antibiotics from wastewaters by bioaccumulation, biodegradation and biosorption. Microalgal treatment can be an alternative of conventional processes with generation of VAPs. The use of biotechnology in wastewater remediation with simultaneous generation of VAPs is trending. The validation of economic viability and environmental sustainability, life cycle assessment studies and techno-economic analysis is undergoing. Thus, in this review, the characteristics of TWW and microalgae are summarized, which manifest microalgae as potential candidates for wastewater remediation with simultaneous production of VAPs. Further, the treatment mechanisms, various factors (physical, chemical, mechanical and biological etc.) affecting treatment efficiency as well as challenges associated with microalgal remediation are also discussed.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Microalgas/metabolismo , Biodegradação Ambiental , Biotecnologia , Poluentes Ambientais/metabolismo , Biomassa , Biocombustíveis
6.
Environ Pollut ; 329: 121635, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085105

RESUMO

Synthesis and characterization of highly active cross-linked laccase aggregates (CLLAs) were performed and evaluated for removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater. Laccase from Tramates versicolor MTCC 138 was insolubilized as CLLAs via precipitation with 70% ammonium sulphate and simultaneous cross-linking with 5 mM glutaraldehyde to obtain activity recovery of 89.1%. Compared to the free laccase, the pH and thermal stability of the prepared CLLAs were significantly higher. At a high temperature of 60 °C, free laccase had a half-life of 0.25 h, while CLLAs had a half-life of 6.2 h. In biorefinery wastewater (pH 7.0), the free and CLLAs were stored for 3 day at a temperature of 30 °C. Free laccase completely lost their initial activity after 60 h; however, the CLLAs retained 39% activity till 72 h. Due to its excellent stability, free laccase and CLLAs were assessed for removing pentachlorophenol and phenanthrene in wastewater. CLLAs could remove 51-58% of pentachlorophenol (PCP) and phenanthrene (PHE) in 24 h. Biosurfactants, including surfactin, sophorolipid, and rhamnolipid, were assessed for their aptitude to improve the removal of organic contaminants in wastewater. Biorefinery wastewater incubated with all surfactants enhanced PCP and PHE removal compared to the no-surfactant controls. Further, 1 µM rhamnolipid significantly amplified pentachlorophenol and phenanthrene removal to 81-93% for free laccase and CLLAs, respectively.


Assuntos
Pentaclorofenol , Fenantrenos , Lacase/química , Águas Residuárias
7.
Bioresour Technol ; 369: 128395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442602

RESUMO

Microalgae are a promising source of raw material (i.e., proteins, carbohydrates, lipids, pigments, and micronutrients) for various value-added products and act as a carbon sink for atmospheric CO2. The rigidity of the microalgal cell wall makes it difficult to extract different cellular components for its applications, including biofuel production, food and feed supplements, and pharmaceuticals. To improve the recovery of products from microalgae, pretreatment strategies such as biological, physical, chemical, and combined methods have been explored to improve whole-cell disruption and product recovery efficiency. However, the diversity and uniqueness of the microalgal cell wall make the pretreatment process more species-specific and limit its large-scale application. Therefore, advancing the currently available technologies is required from an economic, technological, and environmental perspective. Thus, this paper provides a state-of-art review of the current trends, challenges, and prospects of sustainable microalgal pretreatment technologies from a microalgae-based biorefinery concept.


Assuntos
Microalgas , Microalgas/metabolismo , Biomassa , Carboidratos , Biotecnologia , Biocombustíveis
8.
Environ Sci Pollut Res Int ; 30(28): 71599-71613, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948844

RESUMO

Pharmaceutical active drug(s) especially sulfamethazine (SMZ) is considered as one of the major emerging microcontaminants due its long-term existence in the environmental system and that can influence on the developmental of antibacterial resistance genes. Because of this region it has a great concern in the aquatic system. Moreover, the vast utilization of SMZ, excretion of undigested portion by animals and also through dumping or mishandling, SMZ is frequently detected in various samples (including water) of different places and its surroundings. Additionally, reports shown it has toxic effect against microalgae and mice. Thus, that can lead to several investigators, focusing on removal of SMZ alone or in combination of other drugs in wastewater treatment plants (WWTPs) either by abiotic and/or biotic treatment methods. The present review provides an overview of the toxic effect of SMZ and SMZ degradation/removal in abiotic and biotic processes. Finally, reveals the need of further implication of integrated treatments (including engineered biological mediators) to understand ideal biological approaches for the mineralization of SMZ.


Assuntos
Microalgas , Poluentes Químicos da Água , Animais , Camundongos , Sulfametazina , Poluentes Químicos da Água/toxicidade , Antibacterianos/farmacologia , Água
9.
Chemosphere ; 312(Pt 1): 137072, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336023

RESUMO

This review paper emphasised on the origin of hexavalent chromium toxicity in tannery wastewater and its remediation using novel Microbial Fuel Cell (MFC) technology, including electroactive bacteria, which are known as exoelectrogens, to simultaneously treat wastewater and its action in the production of bioenergy and the mechanism of Cr6+ reduction. Also, there are various parameters like electrode, pH, mode of operation, time of operation, and type of exchange membrane used for promising results shown in enhancing MFC production and remediation of Cr6+. Destructive anthropological activities, such as leather making and electroplating industries are key sources of hexavalent chromium contamination in aquatic repositories. When Cr6+ enters the food chain and enters the human body, it has the potential to cause cancer. MFC is a green innovation that generates energy economically through the reduction of toxic Cr6+ to less toxic Cr3+. The organic substrates utilized at the anode of MFC act as electrons (e-) donors. This review also highlighted the utilization of cheap substrates to make MFCs more economically suitable and the energy production at minimum cost.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Humanos , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Cromo/metabolismo , Eletrodos , Eletricidade
10.
Bioresour Technol ; 363: 127926, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36100182

RESUMO

Biocatalysts, including live microbial cells/enzymes, have been considered a predominant and advantageous tool for effectively transforming biomass into biofuels and valued biochemicals. However, high production costs, separation, and reusability limit its practical application. Immobilization of single and multi-enzymes by employing different nano-supports have gained massive attention because of its elevated exterior domain and high enzymatic performance. Application of nanobiocatalyst can overcome the drawbacks mainly, stability and reusability, thus reflecting the importance of biomass-based biorefinery to make it profitable and sustainable. This review provides an in-depth, comprehensive analysis of nanobiocatalysts systems concerning nano supports and biocatalytic performance characteristics. Furthermore, the effects of nanobiocatalyst on waste biomass to biofuel and valued bioproducts in the biorefinery approach and their critical assessment are discussed. Lastly, this review elaborates commercialization and market outlooks of the bioconversion process using nanobiocatalyst, followed by different strategies to overcome the limitations and future research directions on nanobiocatalytic-based industrial bioprocesses.


Assuntos
Biocombustíveis , Indústrias , Biocatálise , Biomassa
12.
Environ Res ; 212(Pt D): 113454, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597291

RESUMO

Microbial fuel cells are biochemical factories which besides recycling wastewater are electricity generators, if their low power density can be scaled up. This also adds up to work on many factors responsible to increase the cost of running a microbial fuel cell. As a result, the first step is to use environment friendly dead organic algae biomass or even living algae cells in a microbial fuel cell, also referred to as microalgal microbial fuel cells. This can be a techno-economic aspect not only for treating textile wastewater but also an economical way of obtaining value added products and bioelectricity from microalgae. Besides treating wastewater, microalgae in its either form plays an essential role in treating dyes present in wastewater which essentially include azo dyes rich in synthetic ions and heavy metals. Microalgae require these metals as part of their metabolism and hence consume them throughout the integration process in a microbial fuel cell. In this review a detail plan is laid to discuss the treatment of industrial effluents (rich in toxic dyes) employing microbial fuel cells. Efforts have been made by researchers to treat dyes using microbial fuel cell alone or in combination with catalysts, nanomaterials and microalgae have also been included. This review therefore discusses impact of microbial fuel cells in treating wastewater rich in textile dyes its limitations and future aspects.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Microalgas , Corantes/metabolismo , Poluentes Ambientais/metabolismo , Microalgas/metabolismo , Águas Residuárias
13.
Biology (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35383738

RESUMO

Biology retracts the article "Advantage of Species Diversification to Facilitate Sustainable Development of Aquaculture Sector" cited above [...].

14.
Biology (Basel) ; 11(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35336742

RESUMO

Intensified agrochemical-based monoculture systems worldwide are under adoption to meet the challenge of human population growth and the ever-growing global demand for food. However, this path has been opposed and criticized because it involves overexploitation of land, monoculture of few species, excessive input of agrochemicals, and adverse impacts on human health and the environment. The wide diversity among polyculture systems practiced across the globe has created confusion over the priority of a single strategy towards sustainable aquaculture development and safer products. Herein, we highlight the significance of polyculture and integrated aquaculture practices in conveying the successful transition of the aquaculture industry towards sustainable development. So far, the established thought is that the precise selection of aquatic species and a focus on compatible and complementary species combinations are supposed to facilitate rapid progress in food production with more profitability and sustainability. Therefore, the advantages of species diversification are discussed from an ecological perspective to enforce aquaculture expansion. This account asserts that a diverse range of aquaculture practices can promote synergies among farmed species, enhance system resilience, enable conservation, decrease ecological footprints, and provide social benefits such as diversified income and local food security.

15.
Antioxidants (Basel) ; 11(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35326102

RESUMO

The world has faced the challenges of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) for the last two years, first diagnosed at the end of 2019 in Wuhan and widely distributed worldwide. As a result, the WHO has proclaimed the illness brought on by this virus to be a global pandemic. To combat COVID-19, researcher communities continuously develop and implement rapid diagnoses, safe and effective vaccinations and other alternative therapeutic procedures. However, synthetic drug-related side effects and high costs have piqued scientists' interest in natural product-based therapies and medicines. In this regard, antiviral substances derived from natural resources and some medicines have seen a boom in popularity. For instance, algae are a rich source of compounds such as lectins and sulfated polysaccharides, which have potent antiviral and immunity-boosting properties. Moreover, Algae-derived compounds or metabolites can be used as antibodies and vaccine raw materials against COVID-19. Furthermore, some algal species can boost immunity, reduce viral activity in humans and be recommended for usage as a COVID-19 preventative measure. However, this field of study is still in its early stages of development. Therefore, this review addresses critical characteristics of algal metabolites, their antioxidant potential and therapeutic potential in COVID-19.

16.
Bioresour Technol ; 351: 127028, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35318147

RESUMO

Excessive generation of wastewater is a matter of concern around the globe. Wastewater treatment utilizing a microalgae-mediated process is considered an eco-friendly and sustainable method of wastewater treatment. However, low biomass productivity, costly harvesting process, and energy extensive cultivation process are the major bottleneck. The use of the microalgal-bacteria granular consortia (MBGC) process is economic and requires less energy. For efficient utilization of MBGC, knowledge of its structure, composition and interaction are important. Various microscopic, molecular and metabolomics techniques play a significant role in understating consortia structure and interaction between partners. Microalgal-bacteria granular consortia structure is affected by various cultivation parameters like pH, temperature, light intensity, salinity, and the presence of other pollutants in wastewater. In this article, a critical evaluation of recent literature was carried out to develop an understanding related to interaction behavior that can help to engineer consortia having efficient nutrient removal capacity with reduced energy consumption.


Assuntos
Microalgas , Purificação da Água , Bactérias , Biomassa , Águas Residuárias
17.
J Pers Med ; 12(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35330349

RESUMO

Coronavirus disease 2019 (COVID-19) is now being investigated for its distinctive patterns in the course of disease development which can be indicated with miscellaneous immune responses in infected individuals. Besides this series of investigations on the pathophysiology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant fundamental immunological and physiological processes are indispensable to address clinical markers of COVID-19 disease and essential to identify or design effective therapeutics. Recent developments in the literature suggest that deficiency of type I interferon (IFN) in serum samples can be used to represent a severe progression of COVID-19 disease and can be used as the basis to develop combined immunotherapeutic strategies. Precise control over inflammatory response is a significant aspect of targeting viral infections. This account presents a brief review of the pathophysiological characteristics of the SARS-CoV-2 virus and the understanding of the immune status of infected patients. We further discuss the immune system's interaction with the SARS-CoV-2 virus and their subsequent involvement of dysfunctional immune responses during the progression of the disease. Finally, we highlight some of the implications of the different approaches applicable in developing promising therapeutic interventions that redirect immunoregulation and viral infection.

18.
Int J Biol Macromol ; 206: 768-776, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35306013

RESUMO

Calmodulin-binding transcription activator (CAMTA) are a group of transcription factors that are known to perform various important biological functions in plants. Here, we report 7 putative CAMTA transcription factors identified from finger millet transcriptome data. They were further analyzed for physicochemical properties, subcellular localization, conserved domains and motifs, Gene Ontology (GO) terms, phylogeny, 3D structure prediction and CAMTA-Ca2+-Calmodulin interaction through protein-protein docking. All EcCAMTAs were found to be localized in the nucleus and possessed a calmodulin binding domain (CaMBD). GO results indicated the involvement of CAMTAs in DNA binding and protein binding molecular functions. Phylogenetic analysis classified EcCAMTA genes into 3-subgroups. 3D-structure of CAMTA proteins was elucidated through ab-initio protein modeling and its interaction with Calmodulin was investigated by docking studies. Our study provides molecular insight into the structure and function of CAMTA genes in finger millet and also highlights the role of omics-based in-silico approaches for identification of novel gene families in the absence of a reference genome or annotated database. This being the first study of CAMTA transcription factor family in finger millet, it could serve as a resource for further studies of CAMTA genes either in finger millet or other related millets and cereal crops.


Assuntos
Eleusine , Calmodulina/genética , Eleusine/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
19.
Polymers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215639

RESUMO

In the growing polymer industry, the interest of researchers is captivated by bioplastics production with biodegradable and biocompatible properties. This study examines the polyhydroxyalkanoates (PHA) production performance of individual Lysinibacillus sp. RGS and Ralstonia eutropha ATCC 17699 and their co-culture by utilizing sugarcane bagasse (SCB) hydrolysates. Initially, acidic (H2SO4) and acidified sodium chlorite pretreatment was employed for the hydrolysis of SCB. The effects of chemical pretreatment on the SCB biomass assembly and its chemical constituents were studied by employing numerous analytical methods. Acidic pretreatment under optimal conditions showed effective delignification (60%) of the SCB biomass, leading to a maximum hydrolysis yield of 74.9 ± 1.65% and a saccharification yield of 569.0 ± 5.65 mg/g of SCB after enzymatic hydrolysis. The resulting SCB enzymatic hydrolysates were harnessed for PHA synthesis using individual microbial culture and their defined co-culture. Co-culture strategy was found to be effective in sugar assimilation, bacterial growth, and PHA production kinetic parameters relative to the individual strains. Furthermore, the effects of increasing acid pretreated SCB hydrolysates (20, 30, and 40 g/L) on cell density and PHA synthesis were studied. The effects of different cost-effective nutrient supplements and volatile fatty acids (VFAs) with acid pretreated SCB hydrolysates on cell growth and PHA production were studied. By employing optimal conditions and supplementation of corn steep liquor (CSL) and spent coffee waste extracted oil (SCGO), the co-culture produced maximum cell growth (DCW: 11.68 and 11.0 g/L), PHA accumulation (76% and 76%), and PHA titer (8.87 and 8.36 g/L), respectively. The findings collectively suggest that the development of a microbial co-culture strategy is a promising route for the efficient production of high-value bioplastics using different agricultural waste biomass.

20.
Polymers (Basel) ; 14(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35160637

RESUMO

This study explored the potential of abundantly available sodium lignosulfonate (LS) as a reducer and fabricating agent in preparing silver nanoparticles (LS-Ag NPs). The operational conditions were optimized to make the synthesis process simpler, rapid, and eco-friendly. The prepared LS-Ag NPs were analyzed via UV-Vis spectroscopy, X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, and high-resolution transmission electron microscopy. Results demonstrated that LS-Ag NPs were of crystalline structure, capped with LS constituents, and spherical in shape with a size of approximately 20 nm. Under optimized conditions, LS-Ag NPs exhibited significant photocatalytic activity in Reactive Yellow 4G degradation. The effects of photocatalyst (LS-Ag NPs) dosage, dye concentration, and its reusability for dye degradation were studied to make the process practically applicable in textile wastewater treatment. Additionally, the synthesized LS-Ag NPs displayed significant free radical scavenging against 2-diphenyl-1-picrylhydrazyl (DPPH) with an IC50 value of (50.2 ± 0.70 µg/mL) and also exhibited antidiabetic activity in terms of inhibition in the activity of carbohydrate-degrading marker enzyme α-glucosidase with an IC50 value of (58.1 ± 0.65 µg/mL). LS-Ag NPs showed substantial antibacterial potential against pathogenic strains, namely E. coli and S. aureus. In conclusion, LS-Ag NPs can be a reliable and eco-friendly material for their possible application in the treatment of dye-containing wastewater and have a great perspective in the biomedical and pharmaceutical sectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA