Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 12: 28, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26376633

RESUMO

BACKGROUND: While exposure to ambient air contaminants is clearly associated with adverse health outcomes, disentangling mechanisms of pollutant interactions remains a challenge. OBJECTIVES: We aimed at characterizing free radical pathways and the endothelinergic system in rats after inhalation of urban particulate matter, ozone, and a combination of particles plus ozone to gain insight into pollutant-specific toxicity mechanisms and any effect modification due to air pollutant mixtures. METHODS: Fischer 344 rats were exposed for 4 h to a 3 × 3 concentration matrix of ozone (0, 0.4, 0.8 ppm) and EHC-93 particles (0, 5, 50 mg/m(3)). Bronchoalveolar lavage fluid (BALF), BAL cells, blood and plasma were analysed for biomarkers of effects immediately and 24 h post-exposure. RESULTS: Inhalation of ozone increased (p < 0.05) lipid oxidation products in BAL cells immediately post-exposure, and increased (p < 0.05) total protein, neutrophils and mature macrophages in the BALF 24 h post-exposure. Ozone increased (p < 0.05) the formation of reactive oxygen species (ROS), assessed by m-, p-, o-tyrosines in BALF (Ozone main effects, p < 0.05), while formation of reactive nitrogen species (RNS), indicated by 3-nitrotyrosine, correlated with dose of urban particles (EHC-93 main effects or EHC-93 × Ozone interactions, p < 0.05). Carboxyhemoglobin levels in blood exhibited particle exposure-related increase (p < 0.05) 24 h post recovery. Plasma 3-nitrotyrosine and o-tyrosine were increased (p < 0.05) after inhalation of particles; the effect on 3-nitrotyrosine was abrogated after exposure to ozone plus particles (EHC-93 × Ozone, p < 0.05). Big endothelin-1 (BET-1) and ET-1 were increased in plasma after inhalation of particles or ozone alone, but the effects appeared to be attenuated by co-exposure to contaminants (EHC-93 × Ozone, p < 0.05). Plasma ET levels were positively correlated (p < 0.05) with BALF m- and o-tyrosine levels. CONCLUSIONS: Pollutant-specific changes can be amplified or abrogated following multi-pollutant exposures. Oxidative and nitrative stress in the lung compartment may contribute to secondary extra-pulmonary ROS/RNS formation. Nitrative stress and endothelinergic imbalance emerge as potential key pathways of air pollutant health effects, notably of ambient particulate matter.


Assuntos
Endotelinas/sangue , Nitratos/metabolismo , Estresse Oxidativo , Ozônio/toxicidade , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Exposição por Inalação , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA