Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
NPJ Digit Med ; 5(1): 93, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840653

RESUMO

Smartphones and wearables are widely recognised as the foundation for novel Digital Health Technologies (DHTs) for the clinical assessment of Parkinson's disease. Yet, only limited progress has been made towards their regulatory acceptability as effective drug development tools. A key barrier in achieving this goal relates to the influence of a wide range of sources of variability (SoVs) introduced by measurement processes incorporating DHTs, on their ability to detect relevant changes to PD. This paper introduces a conceptual framework to assist clinical research teams investigating a specific Concept of Interest within a particular Context of Use, to identify, characterise, and when possible, mitigate the influence of SoVs. We illustrate how this conceptual framework can be applied in practice through specific examples, including two data-driven case studies.

3.
JAMIA Open ; 5(2): ooac043, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35702625

RESUMO

Objective: To summarize applications of natural language processing (NLP) in model informed drug development (MIDD) and identify potential areas of improvement. Materials and Methods: Publications found on PubMed and Google Scholar, websites and GitHub repositories for NLP libraries and models. Publications describing applications of NLP in MIDD were reviewed. The applications were stratified into 3 stages: drug discovery, clinical trials, and pharmacovigilance. Key NLP functionalities used for these applications were assessed. Programming libraries and open-source resources for the implementation of NLP functionalities in MIDD were identified. Results: NLP has been utilized to aid various processes in drug development lifecycle such as gene-disease mapping, biomarker discovery, patient-trial matching, adverse drug events detection, etc. These applications commonly use NLP functionalities of named entity recognition, word embeddings, entity resolution, assertion status detection, relation extraction, and topic modeling. The current state-of-the-art for implementing these functionalities in MIDD applications are transformer models that utilize transfer learning for enhanced performance. Various libraries in python, R, and Java like huggingface, sparkNLP, and KoRpus as well as open-source platforms such as DisGeNet, DeepEnroll, and Transmol have enabled convenient implementation of NLP models to MIDD applications. Discussion: Challenges such as reproducibility, explainability, fairness, limited data, limited language-support, and security need to be overcome to ensure wider adoption of NLP in MIDD landscape. There are opportunities to improve the performance of existing models and expand the use of NLP in newer areas of MIDD. Conclusions: This review provides an overview of the potential and pitfalls of current NLP approaches in MIDD.

4.
Sensors (Basel) ; 22(6)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336307

RESUMO

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson's disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies.


Assuntos
Metadados , Doença de Parkinson , Humanos
5.
Anal Chem ; 91(7): 4323-4330, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561991

RESUMO

Accurate quantification of analyte using surface-enhanced Raman spectroscopy (SERS) is a desired, yet unfulfilled, ability that could enable a plethora of diagnostic- and defense-related applications. The major hurdles to overcome to achieve this goal are expensive manufacturing for highly ordered and reproducible substrates and low reproducibility of substrates produced through low cost methods. A technology that can set industry standards for manufacturing/processing of SERS substrates is still yet to be achieved. A dual-modality multisite sensing approach was developed, that overcomes the limitations experienced when fabricating bottom-up, reproducible, sensitive, and low-cost SERS substrates. Electrochemistry was combined with SERS for dual-modality sensing to improve precision by adding redundancy and encoding features, thus increasing measurement robustness and predictability. This technique works by calibrating SERS response with respect to active surface area, a parameter known to be proportional to charge, which can be estimated via electrochemical measurements. The dual-modality multisite measurement demonstrates at least 2.8× improvement in assay precision compared to the traditional single-site Raman measurements. The technique yields overall improved precision of measurement and is not limited to any particular SERS substrate or geometry, and thus it can be adapted and incorporated readily in any SERS sensing assay.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA