Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555236

RESUMO

Neovascular or "wet" age-related macular degeneration (nAMD) is a leading cause of blindness among older adults. Choroidal neovascularization (CNV) is a major pathological feature of nAMD, in which abnormal new blood vessel growth from the choroid leads to irreversible vision loss. There is a critical need to develop novel therapeutic strategies to address limitations of the current anti-vascular endothelial growth factor biologics. Previously, we identified soluble epoxide hydrolase (sEH) as a possible therapeutic target for CNV through a forward chemical genetic approach. The purpose of this study was to validate sEH as a target by examining retinal expression of sEH protein and mRNA by immunohistochemistry and RNAscope in situ hybridization, respectively, and to assess the efficacy of an adeno-associated virus (AAV) vector designed to knock down the sEH gene, Ephx2, in the murine laser-induced (L-) CNV model. nAMD patient postmortem eye tissue and murine L-CNV showed overexpression of sEH in photoreceptors and retinal pigment epithelial cells. Ephx2 knockdown significantly reduced CNV and normalized mRNA expression levels of CNV-related inflammatory markers. Thus, this study further establishes sEH as a promising therapeutic target against CNV associated with nAMD.


Assuntos
Neovascularização de Coroide , Epóxido Hidrolases , Animais , Humanos , Camundongos , Corioide/metabolismo , Neovascularização de Coroide/metabolismo , Modelos Animais de Doenças , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell Chem Biol ; 29(6): 1010-1023.e14, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35090600

RESUMO

Activity of the heme synthesis enzyme ferrochelatase (FECH) is implicated in multiple diseases. In particular, it is a mediator of neovascularization in the eye and thus an appealing therapeutic target for preventing blindness. However, no drug-like direct FECH inhibitors are known. Here, we set out to identify small-molecule inhibitors of FECH as potential therapeutic leads using a high-throughput screening approach to identify potent inhibitors of FECH activity. A structure-activity relationship study of a class of triazolopyrimidinone hits yielded drug-like FECH inhibitors. These compounds inhibit FECH in cells, bind the active site in cocrystal structures, and are antiangiogenic in multiple in vitro assays. One of these promising compounds was antiangiogenic in vivo in a mouse model of choroidal neovascularization. This foundational work may be the basis for new therapeutic agents to combat not only ocular neovascularization but also other diseases characterized by FECH activity.


Assuntos
Inibidores da Angiogênese , Ferroquelatase , Inibidores da Angiogênese/farmacologia , Animais , Ferroquelatase/química , Ferroquelatase/metabolismo , Camundongos , Neovascularização Patológica
3.
Prog Retin Eye Res ; 87: 100999, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34390869

RESUMO

X-linked Retinoschisis (XLRS) is an early-onset transretinal dystrophy, often with a prominent macular component, that affects males and generally spares heterozygous females because of X-linked recessive inheritance. It results from loss-of-function RS1 gene mutations on the X-chromosome. XLRS causes bilateral reduced acuities from young age, and on clinical exam and by ocular coherence tomography (OCT) the neurosensory retina shows foveo-macular cystic schisis cavities in the outer plexiform (OPL) and inner nuclear layers (INL). XLRS manifests between infancy and school-age with variable phenotypic presentation and without reliable genotype-phenotype correlations. INL disorganization disrupts synaptic signal transmission from photoreceptors to ON-bipolar cells, and this reduces the electroretinogram (ERG) bipolar b-wave disproportionately to photoreceptor a-wave changes. RS1 gene expression is localized mainly to photoreceptors and INL bipolar neurons, and RS1 protein is thought to play a critical cell adhesion role during normal retinal development and later for maintenance of retinal structure. Several independent XLRS mouse models with mutant RS1 were created that recapitulate features of human XLRS disease, with OPL-INL schisis cavities, early onset and variable phenotype across mutant models, and reduced ERG b-wave to a-wave amplitude ratio. The faithful phenotype of the XLRS mouse has assisted in delineating the disease pathophysiology. Delivery to XLRS mouse retina of an AAV8-RS1 construct under control of the RS1 promoter restores the retinal structure and synaptic function (with increase of b-wave amplitude). It also ameliorates the schisis-induced inflammatory microglia phenotype toward a state of immune quiescence. The results imply that XLRS gene therapy could yield therapeutic benefit to preserve morphological and functional retina particularly when intervention is conducted at earlier ages before retinal degeneration becomes irreversible. A phase I/IIa single-center, open-label, three-dose-escalation clinical trial reported a suitable safety and tolerability profile of intravitreally administered AAV8-RS1 gene replacement therapy for XLRS participants. Dose-related ocular inflammation occurred after dosing, but this resolved with topical and oral corticosteroids. Systemic antibodies against AAV8 increased in dose-dependent fashion, but no antibodies were observed against the RS1 protein. Retinal cavities closed transiently in one participant. Technological innovations in methods of gene delivery and strategies to further reduce immune responses are expected to enhance the therapeutic efficacy of the vector and ultimate success of a gene therapy approach.


Assuntos
Retinosquise , Animais , Eletrorretinografia , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Terapia Genética/métodos , Humanos , Masculino , Camundongos , Retina/metabolismo , Retinosquise/genética , Retinosquise/terapia
4.
Transl Vis Sci Technol ; 9(7): 28, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32844051

RESUMO

Purpose: Electric micro-current has been shown to enhance penetration and transduction of adeno-associated viral (AAV) vectors in mouse retina after intravitreal administration. We termed this: "electric-current vector mobility (ECVM)." The present study considered whether ECVM could augment retinal transduction efficiency of intravitreal AAV8-CMV-EGFP in normal rabbit and nonhuman primate (NHP) macaque. Potential mechanisms underlying enhanced retinal transduction by ECVM were also studied. Methods: We applied an electric micro-current across the intact eye of normal rabbit and monkey in vivo for a brief period immediately after intravitreal injection of AAV8-CMV-EGFP. Retinal GFP expression was evaluated by fundus imaging in vivo. Retinal immunohistochemistry was performed to assess the distribution of retinal cells transduced by the AAV8-EGFP. Basic fibroblast growth factor (bFGF) was analyzed by quantitative RT-polymerase chain reaction (PCR). Müller glial reactivity and inner limiting membrane (ILM) were examined by the glial fibrillary acidic protein (GFAP) and vimentin staining in mouse retina, respectively. Results: ECVM significantly increased the efficiency of AAV reaching and transducing the rabbit retina following intravitreal injection, with gene expression in inner nuclear layer, ganglion cells, and Müller cells. Similar trend of improvement was observed in the ECVM-treated monkey eye. The electric micro-current upregulated bFGF expression in Müller cells and vimentin showed ILM structural changes in mouse retina. Conclusions: ECVM promotes the transduction efficiency of AAV8-CMV-GFP in normal rabbit and monkey retinas following intravitreal injection. Translational Relevance: This work has potential translational relevance to human ocular gene therapy by increasing retinal expression of therapeutic vectors given by intravitreal administration.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Expressão Gênica , Vetores Genéticos/genética , Coelhos , Retina , Transdução Genética
5.
FASEB J ; 33(2): 1758-1770, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30156910

RESUMO

A hallmark of proliferative retinopathies, such as retinopathy of prematurity (ROP), is a pathological neovascularization orchestrated by hypoxia and the resulting hypoxia-inducible factor (HIF)-dependent response. We studied the role of Hif2α in hematopoietic cells for pathological retina neovascularization in the murine model of ROP, the oxygen-induced retinopathy (OIR) model. Hematopoietic-specific deficiency of Hif2α ameliorated pathological neovascularization in the OIR model, which was accompanied by enhanced endothelial cell apoptosis. That latter finding was associated with up-regulation of the apoptosis-inducer FasL in Hif2α-deficient microglia. Consistently, pharmacological inhibition of the FasL reversed the reduced pathological neovascularization from hematopoietic-specific Hif2α deficiency. Our study found that the hematopoietic cell Hif2α contributes to pathological retina angiogenesis. Our findings not only provide novel insights regarding the complex interplay between immune cells and endothelial cells in hypoxia-driven retina neovascularization but also may have therapeutic implications for proliferative retinopathies.-Korovina, I., Neuwirth, A., Sprott, D., Weber, S., Sardar Pasha, S. P. B., Gercken, B., Breier, G., El-Armouche, A., Deussen, A., Karl, M. O., Wielockx, B., Chavakis, T., Klotzsche-von Ameln, A. Hematopoietic hypoxia-inducible factor 2α deficiency ameliorates pathological retinal neovascularization via modulation of endothelial cell apoptosis.


Assuntos
Apoptose/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Células da Medula Óssea/metabolismo , Medula Óssea/metabolismo , Endotélio Vascular/patologia , Neovascularização Patológica , Vasos Retinianos/patologia , Proteína ADAM17/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular Transformada , Modelos Animais de Doenças , Proteína Ligante Fas/metabolismo , Camundongos , Camundongos Knockout , Microglia/metabolismo , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
6.
J Pharmacol Exp Ther ; 367(1): 108-118, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30076264

RESUMO

Ocular neovascular diseases like wet age-related macular degeneration are a major cause of blindness. Novel therapies are greatly needed for these diseases. One appealing antiangiogenic target is reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1). This protein can act as a redox-sensitive transcriptional activator for nuclear factor (NF)-κB and other proangiogenic transcription factors. An existing inhibitor of Ref-1's function, APX3330, previously showed antiangiogenic effects. Here, we developed improved APX3330 derivatives and assessed their antiangiogenic activity. We synthesized APX2009 and APX2014 and demonstrated enhanced inhibition of Ref-1 function in a DNA-binding assay compared with APX3330. Both compounds were antiproliferative against human retinal microvascular endothelial cells (HRECs; GI50 APX2009: 1.1 µM, APX2014: 110 nM) and macaque choroidal endothelial cells (Rf/6a; GI50 APX2009: 26 µM, APX2014: 5.0 µM). Both compounds significantly reduced the ability of HRECs and Rf/6a cells to form tubes at mid-nanomolar concentrations compared with control, and both significantly inhibited HREC and Rf/6a cell migration in a scratch wound assay, reducing NF-κB activation and downstream targets. Ex vivo, APX2009 and APX2014 inhibited choroidal sprouting at low micromolar and high nanomolar concentrations, respectively. In the laser-induced choroidal neovascularization mouse model, intraperitoneal APX2009 treatment significantly decreased lesion volume by 4-fold compared with vehicle (P < 0.0001, ANOVA with Dunnett's post-hoc tests), without obvious intraocular or systemic toxicity. Thus, Ref-1 inhibition with APX2009 and APX2014 blocks ocular angiogenesis in vitro and ex vivo, and APX2009 is an effective systemic therapy for choroidal neovascularization in vivo, establishing Ref-1 inhibition as a promising therapeutic approach for ocular neovascularization.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neovascularização Patológica/tratamento farmacológico , Retina/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Macaca , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neovascularização Patológica/metabolismo , Retina/metabolismo
7.
Sci Rep ; 7(1): 9517, 2017 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-28842607

RESUMO

Neurodegeneration is a common starting point of reactive gliosis, which may have beneficial and detrimental consequences. It remains incompletely understood how distinctive pathologies and cell death processes differentially regulate glial responses. Müller glia (MG) in the retina are a prime model: Neurons are regenerated in some species, but in mammals there may be proliferative disorders and scarring. Here, we investigated the relationship between retinal damage and MG proliferation, which are both induced in a reproducible and temporal order in organotypic culture of EGF-treated mouse retina: Hypothermia pretreatment during eye dissection reduced neuronal cell death and MG proliferation; stab wounds increased both. Combined (but not separate) application of defined cell death signaling pathway inhibitors diminished neuronal cell death and maintained MG mitotically quiescent. The level of neuronal cell death determined MG activity, indicated by extracellular signal-regulated kinase (ERK) phosphorylation, and proliferation, both of which were abolished by EGFR inhibition. Our data suggest that retinal cell death, possibly either by programmed apoptosis or necrosis, primes MG to be able to transduce the EGFR-ERK activity required for cell proliferation. These results imply that cell death signaling pathways are potential targets for future therapies to prevent the proliferative gliosis frequently associated with certain neurodegenerative conditions.


Assuntos
Gliose/etiologia , Gliose/metabolismo , Retina/metabolismo , Animais , Ciclo Celular/genética , Morte Celular , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Gliose/patologia , Camundongos , Modelos Biológicos , Retina/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA