Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 20(8): e1011360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39172766

RESUMO

Secondary contact between closely related taxa represents a "moment of truth" for speciation-an opportunity to test the efficacy of reproductive isolation that evolved in allopatry and to identify the genetic, behavioral, and/or ecological barriers that separate species in sympatry. Sex chromosomes are known to rapidly accumulate differences between species, an effect that may be exacerbated for neo-sex chromosomes that are transitioning from autosomal to sex-specific inheritance. Here we report that, in the Solomon Islands, two closely related bird species in the honeyeater family-Myzomela cardinalis and Myzomela tristrami-carry neo-sex chromosomes and have come into recent secondary contact after ~1.1 my of geographic isolation. Hybrids of the two species were first observed in sympatry ~100 years ago. To determine the genetic consequences of hybridization, we use population genomic analyses of individuals sampled in allopatry and in sympatry to characterize gene flow in the contact zone. Using genome-wide estimates of diversity, differentiation, and divergence, we find that the degree and direction of introgression varies dramatically across the genome. For sympatric birds, autosomal introgression is bidirectional, with phenotypic hybrids and phenotypic parentals of both species showing admixed ancestry. In other regions of the genome, however, the story is different. While introgression on the Z/neo-Z-linked sequence is limited, introgression of W/neo-W regions and mitochondrial sequence (mtDNA) is highly asymmetric, moving only from the invading M. cardinalis to the resident M. tristrami. The recent hybridization between these species has thus enabled gene flow in some genomic regions but the interaction of admixture, asymmetric mate choice, and/or natural selection has led to the variation in the amount and direction of gene flow at sex-linked regions of the genome.


Assuntos
Fluxo Gênico , Introgressão Genética , Hibridização Genética , Isolamento Reprodutivo , Cromossomos Sexuais , Animais , Cromossomos Sexuais/genética , Especiação Genética , Simpatria , Masculino , Feminino , Aves/genética , Melanesia , Genética Populacional , Genoma/genética
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1856): 20210205, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35694749

RESUMO

Intralocus sexually antagonistic selection occurs when an allele is beneficial to one sex but detrimental to the other. This form of selection is thought to be key to the evolution of sex chromosomes but is hard to detect. Here we perform an analysis of phased young sex chromosomes to look for signals of sexually antagonistic selection in the Japan Sea stickleback (Gasterosteus nipponicus). Phasing allows us to date the suppression of recombination on the sex chromosome and provides unprecedented resolution to identify sexually antagonistic selection in the recombining region of the chromosome. We identify four windows with elevated divergence between the X and Y in the recombining region, all in or very near genes associated with phenotypes potentially under sexually antagonistic selection in humans. We are unable, however, to rule out the alternative hypothesis that the peaks of divergence result from demographic effects. Thus, although sexually antagonistic selection is a key hypothesis for the formation of supergenes on sex chromosomes, it remains challenging to detect. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.


Assuntos
Smegmamorpha , Alelos , Animais , Japão , Fenótipo , Cromossomos Sexuais/genética , Smegmamorpha/genética
3.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35100353

RESUMO

The sex chromosomes of the guppy, Poecilia reticulata, and its close relatives are of particular interest: they are much younger than the highly degenerate sex chromosomes of model systems such as humans and Drosophila melanogaster, and they carry many of the genes responsible for the males' dramatic coloration. Over the last decade, several studies have analyzed these sex chromosomes using a variety of approaches including sequencing genomes and transcriptomes, cytology, and linkage mapping. Conflicting conclusions have emerged, in particular concerning the history of the sex chromosomes and the evolution of suppressed recombination between the X and Y. Here, we address these controversies by reviewing the evidence and reanalyzing data. We find no evidence of a nonrecombining sex-determining region or evolutionary strata in P. reticulata. Furthermore, we find that the data most strongly support the hypothesis that the sex-determining regions of 2 close relatives of the guppy, Poecilia wingei and Micropoecilia picta, evolved independently after their lineages diverged. We identify possible causes of conflicting results in previous studies and suggest best practices going forward.


Assuntos
Poecilia , Animais , Mapeamento Cromossômico , Drosophila melanogaster/genética , Genoma , Masculino , Poecilia/genética , Cromossomos Sexuais/genética
4.
Mol Biol Evol ; 38(10): 4403-4418, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34117766

RESUMO

How consistent are the evolutionary trajectories of sex chromosomes shortly after they form? Insights into the evolution of recombination, differentiation, and degeneration can be provided by comparing closely related species with homologous sex chromosomes. The sex chromosomes of the threespine stickleback (Gasterosteus aculeatus) and its sister species, the Japan Sea stickleback (G. nipponicus), have been well characterized. Little is known, however, about the sex chromosomes of their congener, the blackspotted stickleback (G. wheatlandi). We used pedigrees to obtain experimentally phased whole genome sequences from blackspotted stickleback X and Y chromosomes. Using multispecies gene trees and analysis of shared duplications, we demonstrate that Chromosome 19 is the ancestral sex chromosome and that its oldest stratum evolved in the common ancestor of the genus. After the blackspotted lineage diverged, its sex chromosomes experienced independent and more extensive recombination suppression, greater X-Y differentiation, and a much higher rate of Y degeneration than the other two species. These patterns may result from a smaller effective population size in the blackspotted stickleback. A recent fusion between the ancestral blackspotted stickleback Y chromosome and Chromosome 12, which produced a neo-X and neo-Y, may have been favored by the very small size of the recombining region on the ancestral sex chromosome. We identify six strata on the ancestral and neo-sex chromosomes where recombination between the X and Y ceased at different times. These results confirm that sex chromosomes can evolve large differences within and between species over short evolutionary timescales.


Assuntos
Smegmamorpha , Animais , Evolução Molecular , Recombinação Genética , Cromossomos Sexuais/genética , Smegmamorpha/genética , Cromossomo Y/genética
5.
Am Nat ; 195(2): 361-379, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32017625

RESUMO

Sex differences in overall recombination rates are well known, but little theoretical or empirical attention has been given to how and why sexes differ in their recombination landscapes: the patterns of recombination along chromosomes. In the first scientific review of this phenomenon, we find that recombination is biased toward telomeres in males and more uniformly distributed in females in most vertebrates and many other eukaryotes. Notable exceptions to this pattern exist, however. Fine-scale recombination patterns also frequently differ between males and females. The molecular mechanisms responsible for sex differences remain unclear, but chromatin landscapes play a role. Why these sex differences evolve also is unclear. Hypotheses suggest that they may result from sexually antagonistic selection acting on coding genes and their regulatory elements, meiotic drive in females, selection during the haploid phase of the life cycle, selection against aneuploidy, or mechanistic constraints. No single hypothesis, however, can adequately explain the evolution of sex differences in all cases. Sex-specific recombination landscapes have important consequences for population differentiation and sex chromosome evolution.


Assuntos
Cromossomos/genética , Recombinação Genética , Caracteres Sexuais , Animais , Evolução Biológica , Troca Genética , Epigênese Genética , Feminino , Humanos , Masculino , Meiose , Plantas/genética
6.
G3 (Bethesda) ; 8(6): 1971-1983, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29632132

RESUMO

Recombination often differs markedly between males and females. Here we present the first analysis of sex-specific recombination in Gasterosteus sticklebacks. Using whole-genome sequencing of 15 crosses between G. aculeatus and G. nipponicus, we localized 698 crossovers with a median resolution of 2.3 kb. We also used a bioinformatic approach to infer historical sex-averaged recombination patterns for both species. Recombination is greater in females than males on all chromosomes, and overall map length is 1.64 times longer in females. The locations of crossovers differ strikingly between sexes. Crossovers cluster toward chromosome ends in males, but are distributed more evenly across chromosomes in females. Suppression of recombination near the centromeres in males causes crossovers to cluster at the ends of long arms in acrocentric chromosomes, and greatly reduces crossing over on short arms. The effect of centromeres on recombination is much weaker in females. Genomic differentiation between G. aculeatus and G. nipponicus is strongly correlated with recombination rate, and patterns of differentiation along chromosomes are strongly influenced by male-specific telomere and centromere effects. We found no evidence for fine-scale correlations between recombination and local gene content in either sex. We discuss hypotheses for the origin of sexual dimorphism in recombination and its consequences for sexually antagonistic selection and sex chromosome evolution.


Assuntos
Recombinação Genética , Caracteres Sexuais , Smegmamorpha/genética , Animais , Feminino , Masculino , Cromossomos Sexuais/genética , Especificidade da Espécie
7.
Evolution ; 70(2): 257-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26787267

RESUMO

Hybridization and introgression can have important evolutionary consequences for speciation, especially during early stages of secondary contact when reproductive barriers may be weak. Few studies, however, have quantified dynamics of hybridization and introgression in systems in which recent natural dispersal across a geographic barrier resulted in secondary contact. We investigated patterns of hybridization and introgression between two Myzomela honeyeaters (M. tristrami and M. cardinalis) that recently achieved secondary contact on Makira in the Solomon Islands. Hybridization in this system was hypothesized to be a byproduct of conspecific mate scarcity during early stages of colonization. Our research, however, provides evidence of ongoing hybridization more than a century after secondary contact. Mitochondrial sequencing revealed strongly asymmetric reproductive isolation that is most likely driven by postzygotic incompatibilities rather than prezygotic behavioral barriers. Nuclear introgression was observed from the native species (M. tristrami) to the colonizing species (M. cardinalis). Nuclear introgression in the reverse direction is almost exclusively limited to birds that are phenotypically M. tristrami but possess M. cardinalis mitochondrial haplotypes, consistent with introgression of plumage-related alleles into the genomic background of M. cardinalis. These results provide unique insight into the dynamics and consequences of hybridization and introgression during early stages of secondary contact.


Assuntos
Evolução Molecular , Especiação Genética , Genótipo , Hibridização Genética , Passeriformes/genética , Isolamento Reprodutivo , Animais , Genoma Mitocondrial , Haplótipos , Ilhas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA