Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(7): 8417-8429, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38344952

RESUMO

The molecular pathways that melatonin follows as a Parkinson's disease (PD) antagonist remain poorly elucidated, despite it being a safe and a potential neurotherapeutic drug with a few limitations such as less bioavailability, premature oxidation, brain delivery, etc. Here, we used a biocompatible protein (HSA) nanocarrier for the delivery of melatonin to the brain. This nanomelatonin showed better antioxidative and neuroprotective properties, and it not only improves mitophagy to remove unhealthy mitochondria but also improves mitochondrial biogenesis to counteract rotenone-induced toxicity in an in vitro PD model. We also showed BMI1, a member of the PRC1 complex that regulates mitophagy, whose protein expression was enhanced after nanomelatonin dosage. These effects were translated to a rodent model, where nanomelatonin improves the TH+ve neuron population in SNPC and protects against rotenone-mediated toxicity. Our findings highlight the significantly better in vitro and in vivo neuroprotective effect of nanomelatonin as well as the molecular/cellular dynamics it influences to regulate mitophagy as a measure of the potential therapeutic candidate for PD.


Assuntos
Melatonina , Nanopartículas , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Mitofagia , Rotenona/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
2.
ACS Chem Neurosci ; 15(1): 71-77, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38109795

RESUMO

The post-translational modification and aggregation of alpha-synuclein are one of the major causes of Parkinson's disease (PD) regulation. In that, the phosphorylation and nitration of synuclein elevate the aggregation, while O-GlcNacylation prevents the aggregation of synuclein. The inhibition of synuclein aggregation directs the development of PD therapy. The endowed O-GlcNacylation of synuclein could be a promising strategy to inhibit synucleinopathy. Therefore, the neuroprotective chitosan-based FTY720 nanoformulation, PP2A (Protein phosphatase 2) activator has been employed to evaluate the PP2A role in the O-GlcNacylation of synuclein in an in vivo PD model. The neuroprotective effect of our nanoformulation is attributed to the upregulation of tyrosine hydroxylase (TH), the PD therapeutic target, with behavioral improvement in animals against rotenone-induced PD deficits. The neuroprotective molecular insights revealed the camouflaged role of PP2A by endowing the OGT activity that induces O-GlcNacylation of synuclein in the reduction of synucleinopathy.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Sinucleinopatias/tratamento farmacológico , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Fosforilação , Processamento de Proteína Pós-Traducional
3.
Mol Pharm ; 20(6): 2899-2910, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37116080

RESUMO

Oxidative stress, reactive oxygen species generation, and overexpression of VEGF are signatory events in diabetic retinopathy. The downregulation of VEGF and anti-inflammatory action pave the way for diabetic retinopathy (DR) therapy. In that, lower absorption kinetics of melatonin limits its immense therapeutic potential. Hence, we have demonstrated a reverse microemulsion method to synthesize melatonin-loaded polydopamine nanoparticles to replenish both at a single platform with an improved melatonin delivery profile. The study has evaluated in vitro and in vivo protection efficiency of biocompatible melatonin-loaded polydopamine nanoparticles (MPDANPs). The protection mechanism was explained by downregulation of VEGF, CASPASE3, and PKCδ against high-glucose/streptozotocin (STZ)-induced insults, in vitro and in vivo. The anti-inflammatory and antiangiogenic effect and potential of MPDANPs to enhance melatonin in vivo stability with prolonged circulation time have proved MPDANPs as a potential therapeutic candidate in DR management. The DR therapeutic potential of MPDANPs has been arbitrated by improving the bioavailability of melatonin and inhibition of VEGF-PKCδ crosstalk in vivo.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Melatonina , Humanos , Retinopatia Diabética/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Retina , Fator A de Crescimento do Endotélio Vascular
4.
ACS Appl Mater Interfaces ; 15(10): 12708-12718, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36857164

RESUMO

Transferrin is an iron transporting protein consisting of bilobal protein shells (apotransferrin) with dual domains in each lobe, holding an interdomain iron binding cleft. This cleft is useful in synthesizing an iron oxide core inside the transferrin shell. In vitro reconstitution chemistry provides a nano-dimensional synthesis of the mineral core inside the protein shell. The present study demonstrates the synthesis of magnetotransferrin with reconstitution of apotransferrin to form iron oxide nanoparticles within the transferrin. Transmission electron microscopy investigations along with analysis of electronic diffraction patterns and magnetometry studies indicate entrapment of superparamagnetic iron (III) oxide nanoparticles. In vivo/ex vivo imaging of the brain and immunogold staining of brain sections further validate the brain targeting potential of "magnetotransferrin". The in vivo therapeutic potential of magneto transferrin has been demonstrated by induction of TRPV1 magnetic stimuli protein, having an important regulatory role in Parkinsonism management. In an exploration of neuroprotective mechanisms, deacetylation of H3K27 of synuclein has been revealed through the TRPV1-mediated HDAC3 activation in the treatment of Parkinsonism. Thus, this magnetic protein could be a potent candidate for brain targeting, bio-imaging, and therapy of neurological infirmities.


Assuntos
Ferro , Transferrina , Transferrina/química , Ferro/metabolismo , Encéfalo/metabolismo , Magnetismo
5.
ACS Biomater Sci Eng ; 8(9): 3810-3818, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005299

RESUMO

The imbalance in the bone remodeling process with more bone resorption by osteoclasts compared to bone formation by osteoblasts results in a metabolic bone disorder known as osteoporosis. This condition reduces the bone mineral density and increases the risk of fractures due to low bone mass and disrupted bone microarchitecture. Osteoclastogenesis increases when the receptor activator NFκB ligand (RANKL) on the osteoblast surface binds to the receptor activator NFκB (RANK) on the osteoclast surface and the function of the decoy receptor of RANKL, osteoprotegrin, is compromised due to external stimuli such as heparin and lipopolysaccharides. The RANK/RANKL axis promotes the nuclear factor kappa B (NFκB) expression, which in turn increases the histone methyltransferase activity of EzH2 and EzH1 for the epigenetic regulation of osteoclastogenesis-related genes. Genistein counteracts NFκB-induced osteoclastogenesis and downstream signaling through the direct regulation of histone methyltransferase, EzH2 and EzH1, transcription. However, genistein possesses limitations like low bioavailability, low water solubility, high estrogen activity, and thyroid side effects, which obstruct its therapeutic usage. Here, the nanoemulsified formulation of genistein with vitamin D was utilized to circumvent the limitations of genistein so that it can be utilized for therapeutic purposes in osteoporosis management. The nanoemulsification of genistein and vitamin D was performed through the spontaneous emulsification using Tween 80 and medium chain triglyceride oil as an organic phase. The physiologically stable and biocompatible combination of the genistein and vitamin D nanoemulsion (GVNE) exhibited the controlled release pattern of genistein with Korsmeyer-Peppas and Higuchi models under different pH conditions (7.4, 6.5, and 1.2). The GVNE potentially enhanced the therapeutic efficacy under in vitro osteoporosis models and helped restore disease parameters like alkaline phosphatase activity, tartrate-resistant acid phosphatase activity, and the formation of multinuclear giant cells. Molecularly, the GVNE overturned the LPS-induced osteoclastogenesis by downregulation of NFκB expression along with its binding on EzH2 and EzH1 promoters. GVNE effects on the osteoporosis model established it as an efficient antiosteoporotic therapy. This nanonutraceutical-based formulation provides an epigenetic regulation of osteoporosis management and opens new avenues for alternate epigenetic therapies for osteoporosis.


Assuntos
Genisteína , Osteoporose , Epigênese Genética , Genisteína/uso terapêutico , Histona Metiltransferases/genética , Histona Metiltransferases/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Ligante RANK/uso terapêutico , Vitamina D/uso terapêutico
6.
Biomater Adv ; 136: 212796, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35929295

RESUMO

Inflammatory Bowel (IBD) is an umbrella term which includes Crohn's Disease (CD) and Ulcerative Colitis (UC). At present, therapies available for management of the UC includes, corticosteroid, immuno-suppressants and antibiotics are used for mild to moderate UC conditions which can cause nephrotoxicity, hepatotoxicity and cardiotoxicity. Hence, a novel therapeutic candidate having potent anti-inflammatory effect is urgently warranted for the management of UC. Melatonin has emerged as a potent anti-inflammatory agent. However, poor solubility limits its therapeutic potential. Therefore, colon targeted Eudragit-S-100 coated chitosan nanoparticles have been demonstrated to improve melatonin therapeutic efficacy. It was found that melatonin loaded chitosan and colon targeted chitosan nanoparticles had promising anti-inflammatory efficacy in terms of NO scavenging activity in an in-vitro LPS challenged macrophages. Also, colon targeted oral chitosan nano-formulation exhibited remarkable protection in an in vivo UC mice model by improving gross pathological parameters, histo-architectural protection, goblet cell depletion, and immune cells infiltration which can be extrapolated to clinical studies.


Assuntos
Quitosana , Colite Ulcerativa , Doenças Inflamatórias Intestinais , Melatonina , Animais , Anti-Inflamatórios/farmacologia , Quitosana/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Melatonina/farmacologia , Camundongos
7.
ACS Med Chem Lett ; 13(7): 1109-1117, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859882

RESUMO

Neuroblastoma (NB) is an extracranial pediatric tumor with highly invasive growth of cancer biomass and frequent metastases. During the differentiation process in embryonic development, altered epigenetic modifications lead to dysregulated expression of pluripotency markers, resulting in epithelial-mesenchymal transition (EMT) progression. Currently, available chemotherapies have provided a limited solution to this problem due to systemic toxicities and drug resistance. Epigenetic therapeutic molecules like histone deacetylase inhibitors are still in the initial stages of development. We have developed a retinoid (N-(4-hydroxyphenyl) retinamide, 4HPR) loaded acetylated human serum albumin (HSA) nanoformulation to address the epigenetic imbalance and chemoresistance in NB. The idea was conceived to deliver an acetyl pool along with a chemotherapeutic drug, 4HPR, to restrict the invasiveness of NB by maintaining the balance between histone acetylation and trimethylation. The therapeutic efficacy of the formulation was successfully evaluated in the in vitro and in vivo xenograft mouse model system of neuroblastoma. The synthesized nanoparticles show high biocompatibility and therapeutic efficacy in treating neuroblastoma subcutaneous xenografts in nude mice.

8.
Biomater Adv ; 133: 112602, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527145

RESUMO

Parkinson's disease (PD) is the second most neurodegenerative disease caused due to synucleinopathy leads to the death of dopaminergic and serotonergic neurons. The approach to reduce synucleinopathy paves the therapeutic way in PD management. Recent studies highlight anti-Parkinsonism effect of Hytrin that regulates energy homeostasis via activation of mitochondrial redox regulator; IDH2 leading to attenuation of synucleinopathy. However, the burst release kinetics of Hytrin restricts its therapeutic potential. Therefore, we aimed to improve Hytrin release kinetics through nanocarrier mediated delivery, replenish dopamine and serotonin by formulating Hytrin loaded polydopamine serotonin nanohybrid for PD protection. Present study also explores IDH2 mediated neuroprotective action in retardation of synucleinopathy for PD prevention. Nanoformulation has shown effective neurotherapeutic potential by improving Hytrin release profile in the reduction of PD symptoms in vitro and ex vivo. The neuroprotective effect has been attributed to IDH2 induction and alpha-synuclein reduction against rotenone insults. The direct physical interaction of IDH2 and alpha-synuclein, PD hallmark has been uncovered. The study divulges that the restorative effect of our nanoformulation significantly retards the PD deficits byinducing IDH2 mediated alpha-synuclein ubiquitination and proteasomal degradation pathway.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Doença de Parkinson , Sinucleinopatias , Dopamina/metabolismo , Humanos , Indóis , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Polímeros , Prazosina/análogos & derivados , Serotonina/uso terapêutico , alfa-Sinucleína/metabolismo
9.
Life Sci ; 302: 120655, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598656

RESUMO

AIMS: Inflammatory Bowel Disease is characterised by abdominal pain, diarrhoea, rectal bleeding and weight loss. Sometimes it may leads to severe health complications resulting in death of an individual. Current research efforts to highlight the role of melatonin in regulating EZH2, a master epigenetic regulator and its beneficiary effect in case of IBD management. MATERIAL METHODS: Murine macrophages (RAW 264.7) were treated with lipopolysaccharides (LPS) to activate them for generating inflammatory response to investigate efficacy of melatonin in-vitro models. Similarly, for developing in vivo models, Dextran sodium sulphate (36-50 kDa) was used. Evaluations of anti-inflammatory activities were carried out by nitrite assay, western blotting, q-PCR, immunofluorescence, and histological studies. KEY FINDINGS: Reduction of epigenetic target, EZH2 by melatonin significantly improves the clinical symptoms of dextran sodium sulphate induced colitis and may be implicated as a potential therapeutic target in IBD management. The present study evaluates the efficacy of melatonin by epigenetic regulation in IBD models. Down regulation of EZH2 by melatonin reduced the chemical induced inflammatory insults in in vitro and in vivo models. Exploration of molecular pathways has revealed interlink of EZH2 and NOS2, a hallmark of inflammation. Molecular mechanistic action of melatonin is attributed to inhibition of the expression and physical interaction of EZH2 and NOS2. SIGNIFICANCE: Our study highlights melatonin therapeutic effect via attenuating interaction between EZH2 and NOS2 which is beneficial in managing IBD treatment.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Melatonina , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Sulfato de Dextrana/toxicidade , Dextranos/metabolismo , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Doenças Inflamatórias Intestinais/patologia , Melatonina/farmacologia , Melatonina/uso terapêutico , Óxido Nítrico Sintase Tipo II/metabolismo
10.
J Colloid Interface Sci ; 606(Pt 2): 2024-2037, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34749449

RESUMO

The remediation of non-reactive phosphate pollutants in the aquatic system is essential for protecting the ecological niche. In this work, a highly robust protein nanoparticles networked rare-earth metal carbonate-grafted bio-composite membrane (abbreviated as REMC) was fabricated via chemical crosslinking of three-dimensional (3D) hierarchical lanthanum carbonate (mREM) and casein nanoparticles (CsNPs) for selective rejection of non-reactive phosphates. The main components of the REMC membrane are mREM and CsNPs, which were prepared via SDS/CTAB templated homogeneous precipitation and the coacervation/desolvation hybrid method, respectively. The active lanthanum ion (La3+) on the 3D spherulitic surface of mREM exhibited excellent phosphate adsorption capacity (maximum adsorption capacity was 358 mg.g-1) across a wide pH range and in a multi-ionic environment. A series of batch testing and characterizations revealed that the active La3+ and dominating phosphate centers in the REMC membrane framework enable non-enzymatic phosphatase-like activity, cleaving the phosphate ester bond of organic phosphates and releasing free phosphate anions. These released phosphate ions are retained in the REMC membrane via an ion exchange mechanism, where they contribute to improved phosphate removal capacities. Furthermore, CsNPs have a dual function in the membrane, acting as a matrix in the REMC membrane framework and contributing to phosphate ion sequestrations in a synergistic manner. The catalysis of para-nitrophenyl phosphates (pNPP) to paranitrophenol (pNP) in a sequential dephosphorylation by REMC offers an estimate of reaction kinetics and elucidates the underlying mechanism of improved phosphate selectivity in a multi-ionic environment. Furthermore, phosphate specificity, homogeneous binding capacity, reusability, and visual observation of REMC membrane saturation binding direct it's useful economic, industrial applications in aqueous phosphate contaminant removal, which could be beneficial for the active recovery of the aquatic ecosystem.


Assuntos
Lantânio , Poluentes Químicos da Água , Adsorção , Catálise , Ecossistema , Concentração de Íons de Hidrogênio , Troca Iônica , Cinética , Organofosfatos , Fosfatos
12.
Mater Sci Eng C Mater Biol Appl ; 129: 112394, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579913

RESUMO

The ability of some tumours to impart radioresistance serves as a barrier in the cancer therapeutics. Mitochondrial metabolism significantly persuades this cancer cell survival, incursion and plays a crucial role in conferring radioresistance. It would be of great importance to target the active mitochondria to overcome this resistance and achieve tumoricidal efficacy. The current report investigates the improved radiosensitization effect (under Gamma irradiation) in hepatocellular carcinoma through active mitochondrial targeting of alpha-ketoglutarate decorated iron oxide-gold core-shell nanoparticles (GNP). The loading of a chemotherapeutic drug N-(4-hydroxyphenyl)retinamide in GNP allows adjuvant chemotherapy, which further sensitizes cancerous cells for radiotherapy. The GNP shows a drug loading efficiency of 8.5 wt% with a sustained drug release kinetics. The X-Ray diffraction (XRD) pattern and High-Resolution Transmission Electron microscopy (HRTEM) indicates the synthesis of core iron oxide nanoparticles with indications of a thin layer of gold shell on the surface with 1:7 ratios of Fe: Au. The GNP application significantly reduced per cent cell viability in Hepatocellular carcinoma cells through improved radiosensitization at 5 Gy gamma radiation dose. The molecular mechanism revealed a sharp increment in reactive oxygen species (ROS) generation and DNA fragmentation. The mitochondrial targeting probes confirm the presence of GNP in the mitochondria, which could be the possible reason for such improved cellular damage. In addition to the active mitochondrial targeting, the currently fabricated nanoparticles work as a potent Magnetic Resonance Imaging (MRI)/Computed Tomography (CT) contrast agent. This multifunctional therapeutic potential makes GNP as one of the most promising theragnostic molecules in cancer therapeutics.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas Metálicas , Carcinoma Hepatocelular/tratamento farmacológico , Compostos Férricos , Ouro , Humanos , Ácidos Cetoglutáricos , Neoplasias Hepáticas/tratamento farmacológico , Mitocôndrias
13.
Mater Sci Eng C Mater Biol Appl ; 124: 112038, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33947538

RESUMO

Inflammatory Bowel Disease (IBD) is a complex inflammatory condition arising due to interactions of environmental and genetic factors that lead to dysregulated immune response and inflammation in intestine. Complementary and alternative medicine approaches have been utilized to treat IBD. However, chronic inflammatory diseases are not medically curable. Hence, potent anti-inflammatory therapeutic agents are urgently warranted. Melatonin has emerged as a potent anti-inflammatory and neuroprotective candidate. Although, it's therapeutic efficacy is compromised due to less solubility and rapid clearance. Hence, we have synthesized melatonin loaded chitosan nanoparticle (Mel-CSNPs) to improve drug release profile and evaluate its in-vitro and in-vivo therapeutic efficacy. Mel-CSNPs exhibited better anti-inflammatory response in an in-vitro and in-vivo IBD model. Significant anti-inflammatory activity of Mel-CSNPs is attributed to nitric oxide (NO) reduction, inhibited nuclear translocation of NF-kB p65 and reduced IL-1ß and IL-6 expression. In-vivo biodistribution study has shown a good distribution profile. Effective in-vivo therapeutic efficiency of Mel-CSNPs has been confirmed with reduced disease activity index parameters and inhibited neutrophilic infiltration. Histological evaluation has further proved the protective effect of Mel-CSNPs by preventing crypt damage and immune cells infiltration against Dextran Sodium Sulphate induced insults. Immuno-histochemical analysis has confirmed anti-inflammatory action of Mel-CSNPs with reduction of inflammatory markers, Nitric Oxide Synthase-2 (NOS2) and Nitro-tyrosine. Indeed, this study divulges anti-inflammatory activity of Mel-CSNPs by improving the therapeutic potential of melatonin.


Assuntos
Quitosana , Doenças Inflamatórias Intestinais , Melatonina , Nanopartículas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Distribuição Tecidual
14.
Carbohydr Polym ; 254: 117435, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357908

RESUMO

Parkinson's disease (PD) develops due to oxidative stress, mitochondrial aberrations, posttranslational modification, and α-Synuclein (α-Syn) aggregation. The α-synucleinopathy is attributed to phosphorylation and aggregation of α-Syn. A strategy to degrade or reduce phosphorylated protein paves the way to develop PD therapy. Hence, the neuroprotective efficiency of PP2A (Protein phosphatase 2) activator FTY720, loaded chitosan nanoformulation has been evaluated in vitro and ex vivo experimental PD models. Bio-compatible chitosan-based nanocarriers have been utilized to enhance the bio-availability and neuroprotective effect of FTY720. The neuroprotective effect of characterized nanoformulation was determined by the downregulation of PD hallmark phospho-serine 129 (pSer129) α-Syn, with anti-oxidative and anti-inflammatory potentials. The neuroprotective mechanism uncovered novel physical interaction of PP2A and polycomb group of protein Enhancer of zeste homolog 2 to mediate ubiquitination and degradation of agglomerated pSer129 α-Syn. Indeed, this study establishes the neuroprotective potential of chitosan based FTY720 nanoformulations by PP2A mediated epigenetic regulation for PD prevention.


Assuntos
Quitosana/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Cloridrato de Fingolimode/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Proteína Fosfatase 2/genética , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacologia , Animais , Disponibilidade Biológica , Linhagem Celular Tumoral , Modelos Animais de Doenças , Portadores de Fármacos/química , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Cloridrato de Fingolimode/farmacocinética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacocinética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fosforilação/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , Proteólise/efeitos dos fármacos , Transdução de Sinais , Moduladores do Receptor de Esfingosina 1 Fosfato/farmacocinética , Ubiquitinação/efeitos dos fármacos , alfa-Sinucleína/química , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
15.
Phytomedicine ; 80: 153386, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33113500

RESUMO

BACKGROUND: Overexpression of polycomb protein contributes to epigenetic repression in oral squamous cell carcinoma (OSCC) ensuing in poor prognosis and aggressive phenotype. Several plant-based compounds could help prevent epigenome alteration and cancer progression, but their low bioavailability limits their therapeutic activity. HYPOTHESIS: In this study, we have synthesized genistein nanoformulation (GLNPs) and evaluated its epigenetic regulation mechanism for selective apoptosis induction in OSCC. METHODS: Lactalbumin was used to prepare nanoformulation of Genistein. The mechanism of epigenetic regulation and selective apoptosis by Genistein loaded nanoparticles was studied in OSCC cell line JHU011 and fibroblast cell line L929 using immunofluorescence, Western blotting and ChIP-qPCR assay. RESULTS: We have found that GLNPs treatment selectively induced apoptosis in OSCC compared to the normal fibroblast cells. This selective effect in OSCC is achieved through enhanced reactive oxygen species (ROS) generation followed by Bax mitochondrial translocation and caspase 3 activation. Further, GLNPs induced withdrawal of epigenetic transcription repression through concurrent downregulation of the polycomb group proteins (PcG) Bmi 1 and EZH2 along with their successive targets, UbH2AK119 and H3K27me3, which have immense therapeutic implications in the treatment of OSCC. Last, we have established that GLNPs regulate EZH2expression through proteasomal mediated degradation and 3PK inhibition; 3PK protein was found physically linked with EZH2 protein and its promoter region (-1107 to -1002). This event indicates that 3PK might play some crucial role in EZH2 expression and epigenetic control of OSCC. Moreover, the formulation showed improved biodistribution, aqueous dispersibility and enhanced biocompatibility In-vivo. CONCLUSIONS: These results provide evidence that GLNPs may withdraw epigenetic transcriptional repression and selectively induce apoptosis in human oral squamous cell carcinoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/tratamento farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Genisteína/farmacologia , Neoplasias Bucais/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacocinética , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Epigênese Genética/efeitos dos fármacos , Genisteína/administração & dosagem , Genisteína/farmacocinética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
16.
ACS Appl Mater Interfaces ; 12(23): 25633-25644, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32453568

RESUMO

Bmi1 is associated with advanced prognosis of acute myeloid leukemia (AML), and polyethylenimine (PEI)-stabilized Bmi1 siRNA-entrapped human serum albumin (HSA) nanocarriers (PEI@HSANCs) were used to protect siRNA from degradation and also to control epigenetic regulation-based AML therapy. The nanoform increased the transfection efficiency of Bmi1 siRNA through caveolae-mediated endocytosis and enhanced Bax translocation into the mitochondria. It enhanced the caspase 3-mediated apoptosis through the Bax activation and Bcl-2 inhibition. The molecular analysis reveals the downregulation of polycomb proteins, Bmi1 and EzH2, along with inhibition of H3K27me3 and H2AK119ub1. The signaling cascade revealed downregulation of Bmi1 through ubiquitin-mediated degradation and is reversed by a proteasome inhibitor. Further mechanistic studies established a crucial role of transcription factor, C-Myb and Bmi1, as its direct targets for maintenance and progression of AML. Chromatin immunoprecipitation (ChIP) assay confirmed Bmi1 as a direct target of C-Myb as it binds to promoter sequence of Bmi1 between -235 to +43 and -111 to +43. The in vivo studies performed in the AML xenograft model evidence a decrease in the population of leukemic stem cells marker (CD45+) and an increase in the myeloid differentiating marker expression (CD11b+) in the bone marrow after the Bmi1 siRNA nanoconjugated therapy. Activation of apoptotic pathways and withdrawal of epigenetic repression through a ubiquitin proteasomal pathway potentiating a novel antileukemic therapy were established.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Leucemia Mieloide Aguda/tratamento farmacológico , Nanocompostos/uso terapêutico , Complexo Repressor Polycomb 1/metabolismo , RNA Interferente Pequeno/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Complexo Repressor Polycomb 1/genética , Polietilenoimina/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Albumina Sérica Humana/química , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Acta Biomater ; 109: 121-131, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32335311

RESUMO

Wound healing remains a healthcare challenge in patients suffering from grave tissue damage due to burn injuries and severe medical conditions like diabetes and ischemia. A repeated wound dressing in such cases leads to tissue damage, which could further inflate the wound healing. It is also challenging to analyze the depth of wound bed in these conditions, which could affect the recovery period. To address this need, we have developed an injectable hydrogel from natural polysaccharide κ-carrageenan and a pigmented protein C-phycocyanin. C-phycocyanin has wound healing, antimicrobial, antioxidant and anti-inflammatory properties along with the In-vivo fluorescence imaging ability. Gelling property of κ-carrageenan could be utilized along with C-phycocyanin as an injectable and regenerative wound dressings matrix to monitor wound healing in real-time without upsetting the healing process. The hydrogel presented herein was built from ionic crosslinking of κ-carrageenan monomers along with C-phycocyanin, which provides an interconnected network of porous material with hydrophilic surface and mechanical stiffness. This porosity allows nutrients transportation and gaseous exchange across the wound healing site for the proliferation of various cells. Hydrogel material enhances the proliferation of dermal fibroblasts in vitro without inducing inflammation along with reducing the blood clotting time with no haemolysis. We have found that κ-carrageenan-C-phycocyanin (κ-CRG-C-Pc) hydrogel not only exhibit superior haemostatic capabilities in traumatic injury condition but also provide support for rapid wound healing. Overall, these findings demonstrate the potential of κ-carrageenan-C-phycocyanin hydrogels as a wound-healing and imaging platform towards accelerating tissue repair and real-time monitoring. STATEMENT OF SIGNIFICANCE: Blood clotting and inflammation are the most crucial stages of wound healing along with appropriate monitoring of the healing process. Thus, there is a need of system that could provide point-to-point care and monitoring in this multistage process. Here, we have introduced a self healing, injectable hydrogel system with in vivo imaging abilities from κ-carragenan and C-phycocyanin. C-phycocyanin improves the stability of κ-carragenan matrix and provide support to cellular adhesion, proliferation, and migration. Its anti-inflammatory response and rapid blood clotting ability further empower its applicability in critical medical conditions and wound recovery.


Assuntos
Anti-Inflamatórios/uso terapêutico , Carragenina/química , Hemostáticos/uso terapêutico , Hidrogéis/química , Ficocianina/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/uso terapêutico , Cabras , Hemólise/efeitos dos fármacos , Hemostáticos/química , Hidrogéis/síntese química , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Imagem Óptica , Ficocianina/química , Porosidade , Células RAW 264.7 , Ratos Wistar
18.
ACS Biomater Sci Eng ; 6(5): 3139-3153, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33463265

RESUMO

Epigenetically regulated therapeutic intervention of cancer is an emerging era of research in the development of a promising therapy. Epigenetic changes are intrinsically reversible and providing the driving force to drug resistance in colorectal cancer (CRC). The regulation of polycomb group (PcG) proteins, BMI1 and EZH2, and the associated CRC progression hold promises for a novel treatment regime. The present study enlightens targeted photodynamic therapy (PDT) with potential photosensitizer hypericin nanocomposite in the development of epigenetic-based CRC therapy. We have synthesized hypericin-loaded transferrin nanoformulations (HTfNPs) overcoming the compromised hydrophobicity and poor bioavailability of the placebo drug. Targeted PDT with hypericin nanocomposite-induced BMI1 degradation assisted CRC retardation. In the present study, transferrin nanoparticles were reported to control the premature release of hypericin and improve its availability with better targeting at the disease site. Targeted intracellular internalization to colon cancer cells having a differential expression of transferrin receptors, in vivo biodistribution, stability, and pharmacokinetics provide promising applications in the nanodelivery system. Indeed, in vitro anticancer efficiency, cell cycle arrest at the G0/G1 phase, and elevated reactive oxygen species (ROS) generation confirm the anticancer effect of nanoformulation. In the exploration of mechanism, nanotherapeutic intervention by activation of PP2A, Caspase3 and inhibition of BMI1, EZH2, 3Pk, NFκB was evident. An exciting outcome of this study uncovered the camouflaged role of PP2A in the regulation of BMI1. PP2A mediates the ubiquitination/degradation of BMI1, which is revealed by changes in the physical interaction of PP2A and BMI1. Our study confirms the anticancer effect of HTfNP-assisted PDT by inducing PP2A-mediated BMI1 ubiquitination/degradation demonstrating an epigenetic-driven nanotherapeutic approach in CRC treatment.


Assuntos
Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Antracenos , Neoplasias Colorretais/tratamento farmacológico , Humanos , Perileno/análogos & derivados , Distribuição Tecidual , Transferrina
19.
Nanomedicine ; 24: 102088, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31476446

RESUMO

Posttranslational modification and agglomeration of α-synuclein (α-Syn), mitochondrial dysfunction, oxidative stress and loss of dopaminergic neurons are hallmark of Parkinson's disease (PD). This paper evaluates neuroprotection efficacy of nature inspired biocompatible polydopamine nanocarrier for metformin delivery (Met encapsulated PDANPs) by crossing blood brain barrier in in vitro, 3D and in vivo experimental PD models. The neuroprotective potential was arbitrated by downregulation of phospho-serine 129 (pSer129) α-Syn, with reduction in oxidative stress, prevention of apoptosis and anti-inflammatory activities. The neuroprotective mechanism proved novel interaction of epigenetic regulator EZH2 mediated ubiquitination and proteasomal degradation of aggregated pSer129 α-Syn. In summary, this study divulges the neuroprotective role of Met loaded PDANPs by reversing the neurochemical deficits by confirming an epigenetic mediated nanotherapeutic approach for the PD prevention.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metformina , Modelos Biológicos , Nanoestruturas , Doença de Parkinson/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Humanos , Indóis/química , Indóis/farmacologia , Metformina/química , Metformina/farmacologia , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Polímeros/química , Polímeros/farmacologia
20.
ACS Chem Neurosci ; 10(8): 3375-3385, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31244053

RESUMO

Optogenetics have evolved as a promising tool to control the processes at a cellular level via photons. Specially, it confers a specific control over cellular function through real-time cytomodulation even in freely moving animals. Neuronal stimulation is prerequisite for deep tissue light penetration or insertion of optrode for light illumination to the neurons that have been proven to be compromised due to poor light penetration and invasiveness of the procedure, respectively. In this review, the application of nanotechnology is being elaborated by the use of metal nanoparticles (AuNPs), upconversion nanocrystals (UCNPs), and quantum dots (CdSe) for targeting particular organs or tissues, and their potential to emit a specific light on excitation to overcome the limitations associated with earlier methods has been elucidated. The optothermal and magnetothermal properties, photoluminescence, and higher photostability of nanomaterials are explored in context of therapeutic applicability of optogenetics. The nanostructure characteristics and specific ion channel targeting have shown promising therapeutic potential against neurodegenerative disorders (Alzheimer's, Parkinson's, Huntington's), epilepsy, and blindness. This review compiles mechanical and optical characteristics of nanomaterials that endow superior optogenetic therapeutic potentials to cure immedicable infirmities.


Assuntos
Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Nanotecnologia/tendências , Optogenética/métodos , Optogenética/tendências , Animais , Humanos , Neurologia/métodos , Neurologia/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA