Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373026

RESUMO

Phosphorus (P) is the second most important macronutrient for crop growth and a limiting factor in food production. Choosing the right P fertilizer formulation is important for crop production systems because P is not mobile in soils, and placing phosphate fertilizers is a major management decision. In addition, root microorganisms play an important role in helping phosphorus fertilization management by regulating soil properties and fertility through different pathways. Our study evaluated the impact of two phosphorous formulations (polyphosphates and orthophosphates) on physiological traits of wheat related to yield (photosynthetic parameters, biomass, and root morphology) and its associated microbiota. A greenhouse experiment was conducted using agricultural soil deficient in P (1.49%). Phenotyping technologies were used at the tillering, stem elongation, heading, flowering, and grain-filling stages. The evaluation of wheat physiological traits revealed highly significant differences between treated and untreated plants but not between phosphorous fertilizers. High-throughput sequencing technologies were applied to analyse the wheat rhizosphere and rhizoplane microbiota at the tillering and the grain-filling growth stages. The alpha- and beta-diversity analyses of bacterial and fungal microbiota revealed differences between fertilized and non-fertilized wheat, rhizosphere, and rhizoplane, and the tillering and grain-filling growth stages. Our study provides new information on the composition of the wheat microbiota in the rhizosphere and rhizoplane during growth stages (Z39 and Z69) under polyphosphate and orthophosphate fertilization. Hence, a deeper understanding of this interaction could provide better insights into managing microbial communities to promote beneficial plant-microbiome interactions for P uptake.


Assuntos
Microbiota , Fósforo , Fósforo/metabolismo , Fertilizantes , Triticum/metabolismo , Rizosfera , Microbiota/fisiologia , Solo , Polifosfatos/metabolismo , Microbiologia do Solo
2.
Int Microbiol ; 26(2): 397-409, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36484909

RESUMO

The current plastic pollution throughout the world is a rising concern that demands the optimization of biodegradation processes. One avenue for this is to identify plastic-degrading bacteria and associated enzymes from the gut bacteria of insect models such as Tenebrio molitor, Plodia interpunctella or Galleria mellonella that have the ability to ingest and rapidly degrade polyethylene. Therefore, this study takes part in understanding the role of the gut bacteria by investigating G. mellonella as a biological model feeding with a diet based on honeybee wax mixed or not with low-density polyethylene. Gut microbiome was analyzed by high throughput 16S rRNA sequencing, and Enterococcaceae and Oxalobacteraceae were found to be the major bacterial families. Compared to the control, the supplementation of low-density polyethylene did not cause significant modification of the bacterial microbiota at community and taxa levels, suggesting bacterial microbiome resilience. The bacterial proteome analysis of gut contents was encouraging for the identification of plastic degrading enzymes such as the phenylacetaldehyde dehydrogenase which participate in styrene degradation. This study allowed a better characterization of the gut bacteria of G. mellonella and provided a basis for the further study of biodegradation of polyethylene based on the bacterial microbiota from insect guts.


Assuntos
Mariposas , Polietileno , Humanos , Abelhas/genética , Animais , Larva/metabolismo , Larva/microbiologia , Polietileno/metabolismo , RNA Ribossômico 16S/genética , Mariposas/genética , Mariposas/metabolismo , Mariposas/microbiologia , Plásticos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Dieta , Suplementos Nutricionais
3.
Microorganisms ; 8(3)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121205

RESUMO

Studies in plant-microbiome currently use diverse protocols, making their comparison difficult and biased. Research in human microbiome have faced similar challenges, but the scientific community proposed various recommendations which could also be applied to phytobiome studies. Here, we addressed the isolation of plant microbiota through apple carposphere and lettuce root microbiome. We demonstrated that the fraction of the culturable epiphytic microbiota harvested by a single wash might only represent one-third of the residing microbiota harvested after four successive washes. In addition, we observed important variability between the efficiency of washing protocols (up to 1.6-fold difference for apple and 1.9 for lettuce). QIIME2 analysis of 16S rRNA gene, showed a significant difference of the alpha and beta diversity between protocols in both cases. The abundance of 76 taxa was significantly different between protocols used for apple. In both cases, differences between protocols disappeared when sequences of the four washes were pooled. Hence, pooling the four successive washes increased the alpha diversity for apple in comparison to a single wash. These results underline the interest of repeated washing to leverage abundance of microbial cells harvested from plant epiphytic microbiota whatever the washing protocols, thus minimizing bias.

4.
Mol Biol Rep ; 47(1): 211-224, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31643044

RESUMO

Plasmodium falciparum is transmitted by mosquitoes from the Anopheles gambiae sensu lato (s.l) species complex and is responsible for severe forms of malaria. The composition of the mosquitoes' microbiota plays a role in P. falciparum transmission, so we studied midgut bacterial communities of An. gambiae s.l from Burkina Faso. DNA was extracted from 17 pools of midgut of mosquitoes from the Anopheles gambiae complex from six localities in three climatic areas, including cotton-growing and cotton-free localities to include potential differences in insecticide selection pressure. The v3-v4 region of the 16S rRNA gene was targeted and sequenced using Illumina Miseq (2 × 250 nt). Diversity analysis was performed using QIIME and R software programs. The major bacterial phylum was Proteobacteria (97.2%) in all samples. The most abundant genera were Enterobacter (32.8%) and Aeromonas (29.8%), followed by Pseudomonas (11.8%), Acinetobacter (5.9%) and Thorsellia (2.2%). No statistical difference in operational taxonomic units (OTUs) was found (Kruskal-Wallis FDR-p > 0.05) among the different areas, fields or localities. Richness and diversity indexes (observed OTUs, Chao1, Simpson and Shannon indexes) showed significant differences in the cotton-growing fields and in the agroclimatic zones, mainly in the Sudano-Sahelian area. OTUs from seven bacterial species that mediate refractoriness to Plasmodium infection in An. gambiae s.l were detected. The beta diversity analysis did not show any significant difference. Therefore, a same control strategy of using bacterial species refractoriness to Plasmodium to target mosquito midgut bacterial community and affect their fitness in malaria transmission may be valuable tool for future malaria control efforts in Burkina Faso.


Assuntos
Anopheles/microbiologia , Bactérias/classificação , Microbioma Gastrointestinal , Animais , Anopheles/parasitologia , Bactérias/genética , Burkina Faso , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , Interações Hospedeiro-Parasita/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Intestinos/microbiologia , Intestinos/patologia , Interações Microbianas/fisiologia , Filogenia , Plasmodium falciparum/fisiologia , RNA Ribossômico 16S/análise , Seleção Genética/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA