Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biology (Basel) ; 12(12)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38132332

RESUMO

Magnetic fields are a constant and essential part of our environment. The main components of ambient magnetic fields are the constant part of the geomagnetic field, its fluctuations caused by magnetic storms, and man-made magnetic fields. These fields refer to extremely-low-frequency (<1 kHz) magnetic fields (ELF-MFs). Since the 1980s, a huge amount of data has been accumulated on the biological effects of magnetic fields, in particular ELF-MFs. However, a unified picture of the patterns of action of magnetic fields has not been formed. Even though a unified mechanism has not yet been generally accepted, several theories have been proposed. In this review, we attempted to take a new approach to analyzing the quantitative data on the effects of ELF-MFs to identify new potential areas for research. This review provides general descriptions of the main effects of magnetic storms and anthropogenic fields on living organisms (molecular-cellular level and whole organism) and a brief description of the main mechanisms of magnetic field effects on living organisms. This review may be of interest to specialists in the fields of biology, physics, medicine, and other interdisciplinary areas.

2.
Biology (Basel) ; 12(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132339

RESUMO

The geomagnetic field plays an important role in the existence of life on Earth. The study of the biological effects of (hypomagnetic conditions) HMC is an important task in magnetobiology. The fundamental importance is expanding and clarifying knowledge about the mechanisms of magnetic field interaction with living systems. The applied significance is improving the training of astronauts for long-term space expeditions. This review describes the effects of HMC on animals and plants, manifested at the cellular and organismal levels. General information is given about the probable mechanisms of HMC and geomagnetic field action on living systems. The main experimental approaches are described. We attempted to systematize quantitative data from various studies and identify general dependencies of the magnetobiology effects' value on HMC characteristics (induction, exposure duration) and the biological parameter under study. The most pronounced effects were found at the cellular level compared to the organismal level. Gene expression and protein activity appeared to be the most sensitive to HMC among the molecular cellular processes. The nervous system was found to be the most sensitive in the case of the organism level. The review may be of interest to biologists, physicians, physicists, and specialists in interdisciplinary fields.

3.
Materials (Basel) ; 16(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37512437

RESUMO

With the help of laser ablation, a technology for obtaining nanosized crystalline selenium particles (SeNPs) has been created. The SeNPs do not exhibit significant toxic properties, in contrast to molecular selenium compounds. The administration of SeNPs can significantly increase the viabilities of SH-SY5Y and PCMF cells after radiation exposure. The introduction of such nanoparticles into the animal body protects proteins and DNA from radiation-induced damage. The number of chromosomal breaks and oxidized proteins decreases in irradiated mice treated with SeNPs. Using hematological tests, it was found that a decrease in radiation-induced leukopenia and thrombocytopenia is observed when selenium nanoparticles are injected into mice before exposure to ionizing radiation. The administration of SeNPs to animals 5 h before radiation exposure in sublethal and lethal doses significantly increases their survival rate. The modification dose factor for animal survival was 1.2. It has been shown that the introduction of selenium nanoparticles significantly normalizes gene expression in the cells of the red bone marrow of mice after exposure to ionizing radiation. Thus, it has been demonstrated that SeNPs are a new gene-protective and radioprotective agent that can significantly reduce the harmful effects of ionizing radiation.

4.
Front Med (Lausanne) ; 10: 1098324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844211

RESUMO

This case report highlights the benefit or harm of breastfeeding in a patient with Kidney Failure with Replacement Therapy (KFRT) undergoing program hemodialysis. This is a unique clinical case, as pregnancy and successful delivery are rare in this group of females. With a favorable outcome, the possibility of breastfeeding is especially relevant for doctors and the mother. The patient was a 31-year-old female who was diagnosed in 2017 with end-stage renal disease associated with chronic glomerulonephritis. Against the background of hemodialysis, pregnancy, accompanied by polyhydramnios, anemia, and secondary arterial hypertension, occurred in 2021. At 37 weeks, a healthy, full-term baby girl was born, and breastfeeding was started. In this study, we conducted a detailed analysis of toxic substances and immunologically significant proteins using high-tech analysis methods. In addition, we studied different portions of milk before and after hemodialysis at different time intervals. After a wide range of experiments, our study did not reveal an optimal time interval for breastfeeding a baby. Despite the decrease in the level of the major uremic toxins 4 h after the hemodialysis procedure, their level remained high. In addition, the content of nutrients did not reach acceptable limits and the immune status was characterized as pro-inflammatory. In our opinion, breastfeeding is not advisable for this group of patients since the concentration of nutrients is low, and the content of toxic substances exceeds the permissible limits. In this clinical case, the patient decided to stop breastfeeding one month after delivery due to insufficient breast milk and the inability to express it in a certain period of time.

5.
Ageing Res Rev ; 83: 101775, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334910

RESUMO

Understanding the role of astrocytes in the central nervous system has changed dramatically over the last decade. The accumulating findings indicate that glial cells are involved not only in the maintenance of metabolic and ionic homeostasis and in the implementation of trophic functions but also in cognitive functions and information processing in the brain. Currently, there are some controversies regarding the role of astrocytes in complex processes such as aging of the nervous system and the pathogenesis of age-related neurodegenerative diseases. Many findings confirm the important functional role of astrocytes in age-related brain changes, including sleep disturbance and the development of neurodegenerative diseases and particularly Alzheimer's disease. Until recent years, neurobiological research has focused mainly on neuron-glial interactions, in which individual astrocytes locally modulate neuronal activity and communication between neurons. The review considers the role of astrocytes in the physiology of sleep and as an important "player" in the development of neurodegenerative diseases. In addition, the features of the astrocytic network reorganization during aging are discussed.


Assuntos
Doenças Neurodegenerativas , Transtornos do Sono-Vigília , Humanos , Astrócitos/metabolismo , Doenças Neuroinflamatórias , Eixo Encéfalo-Intestino , Sono/fisiologia , Envelhecimento , Doenças Neurodegenerativas/metabolismo
6.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202662

RESUMO

Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation-deaggregation, and in a protein colloid, monomerization-dimerization-aggregation are the main processes when pH is changed. A specific point at pH 7.5, where a transition of the colloidal system from one state to another is observed, has been found using all the optical methods mentioned. It has been shown that gold nanoparticles can stabilize HEWL protein molecules at alkaline pH while maintaining enzymatic activity, which can be used in practice. The data obtained in this manuscript allow for the state of HEWL colloids and gold nanoparticles to be monitored using one or two simple and accessible optical methods.


Assuntos
Nanopartículas Metálicas , Muramidase , Ouro , Coloides , Concentração de Íons de Hidrogênio
7.
Pharmaceutics ; 14(12)2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36559266

RESUMO

Currently, selenium nanoparticles (SeNPs) are considered potential immunomodulatory agents and as targets for activity modulation are granulocytes, which have the most abundant population of immune blood cells. The present study aims to evaluate the cytotoxic effect and its effect on the functional responses of granulocytes. In addition to the intrinsic activity of SeNPs, we studied the activity of the combination of SeNPs and IgG antibodies. Using laser ablation and fragmentation, we obtained nanoparticles with an average size of 100 nm and a rather narrow size evolution. The resulting nanoparticles do not show acute toxicity to primary cultures of fibroblasts and hepatocytes, epithelial-like cell line L-929 and granulocyte-like culture of HL-60 at a concentration of 109 NPs/mL. SeNPs at a concentration of 1010 NPs/mL reduced the viability of HL-60 cells by no more than 10% and did not affect the viability of the primary culture of mouse granulocytes, and did not have a genotoxic effect on progenitor cells. The addition of SeNPs can affect the production of reactive oxygen species (ROS) by mouse bone marrow granulocytes, modulate the proportion of granulocytes with calcium spikes and enhance fMLF-induced granulocytes degranulation. SeNPs can modulate the effect of IgG on the physiological responses of granulocytes. We studied the expression level of genes associated with inflammation and cell stress. SeNPs increase the expression of catalase, NF-κB, Xrcc5 and some others; antibodies enhance the effect of SeNPs, but IgG without SeNPs decreases the expression level of these genes. This fact can be explained by the interaction between SeNPs and IgG. It has been established that antibodies interact with SeNPs. We showed that antibodies bind to the surface of selenium nanoparticles and are present in aqueous solutions in a bound form from DLS methods, ultraviolet-visible spectroscopy, vibrational-rotational spectrometry, fluorescence spectrometry, and refractometry. At the same time, in a significant part of the antibodies, a partial change in the tertiary and secondary structure is observed. The data obtained will allow a better understanding of the principles of the interaction of immune cells with antibodies and SeNPs and, in the future, may serve to create a new generation of immunomodulators.

8.
Nanomaterials (Basel) ; 12(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36432246

RESUMO

In this paper, iron oxide nanoparticles coated with trisodium citrate were obtained. Nanoparticles self-assembling stable clusters were ~10 and 50-80 nm in size, consisting of NPs 3 nm in size. The stability was controlled by using multi-angle dynamic light scattering and the zeta potential, which was -32 ± 2 mV. Clusters from TSC-IONPs can be destroyed when interacting with a hen egg-white lysozyme. After the destruction of the nanoparticles and proteins, aggregates are formed quickly, within 5-10 min. Their sizes depend on the concentration of the lysozyme and nanoparticles and can reach micron sizes. It is shown that individual protein molecules can be isolated from the formed aggregates under shaking. Such aggregation was observed by several methods: multi-angle dynamic light scattering, optical absorption, fluorescence spectroscopy, TEM, and optical microscopy. It is important to note that the concentrations of NPs at which the protein aggregation took place were also toxic to cells. There was a sharp decrease in the survival of mouse fibroblasts (Fe concentration ~75-100 µM), while the ratio of apoptotic to all dead cells increased. Additionally, at low concentrations of NPs, an increase in cell size was observed.

9.
Biomolecules ; 12(11)2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36358963

RESUMO

The properties of a lysozyme solution under laser-induced breakdown were studied. An optical breakdown under laser action in protein solutions proceeds with high efficiency: the formation of plasma and acoustic oscillations is observed. The concentration of protein molecules has very little effect on the physicochemical characteristics of optical breakdown. After exposure to optical breakdown, changes were observed in the enzymatic activity of lysozyme, absorption and fluorescence spectra, viscosity, and the sizes of molecules and aggregates of lysozyme measured by dynamic light scattering. However, the refractive index of the solution and the Raman spectrum did not change. The appearance of a new fluorescence peak was observed upon excitation at 350 nm and emission at 434 nm at exposure for 30 min. Previously, a peak in this range was associated with the fluorescence of amyloid fibrils. However, neither the ThT assay nor the circular dichroism dispersion confirmed the formation of amyloid fibrils. Probably, under the influence of optical breakdown, a small part of the protein degraded, and a part changed its native state and aggregated, forming functional dimers or "native aggregates".


Assuntos
Amiloide , Muramidase , Muramidase/química , Amiloide/química , Dicroísmo Circular , Difusão Dinâmica da Luz , Lasers
10.
Materials (Basel) ; 15(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35057245

RESUMO

Microbial antibiotic resistance is an important global world health problem. Recently, an interest in nanoparticles (NPs) of silver oxides as compounds with antibacterial potential has significantly increased. From a practical point of view, composites of silver oxide NPs and biocompatible material are of interest. A borosiloxane (BS) can be used as one such material. A composite material combining BS and silver oxide NPs has been synthesized. Composites containing BS have adjustable viscoelastic properties. The silver oxide NPs synthesized by laser ablation have a size of ~65 nm (half-width 60 nm) and an elemental composition of Ag2O. The synthesized material exhibits strong bacteriostatic properties against E. coli at a concentration of nanoparticles of silver oxide more than 0.01%. The bacteriostatic effect depends on the silver oxide NPs concentration in the matrix. The BS/silver oxide NPs have no cytotoxic effect on a eukaryotic cell culture when the concentration of nanoparticles of silver oxide is less than 0.1%. The use of the resulting composite based on BS and silver oxide NPs as a reusable dry disinfectant is due to its low toxicity and bacteriostatic activity and its characteristics are not inferior to the medical alloy nitinol.

11.
Nanomaterials (Basel) ; 11(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34835569

RESUMO

A technology for producing a nanocomposite based on the borsiloxane polymer and chemically unmodified fullerenes has been developed. Nanocomposites containing 0.001, 0.01, and 0.1 wt% fullerene molecules have been created. It has been shown that the nanocomposite with any content of fullerene molecules did not lose the main rheological properties of borsiloxane and is capable of structural self-healing. The resulting nanomaterial is capable of generating reactive oxygen species (ROS) such as hydrogen peroxide and hydroxyl radicals in light. The rate of ROS generation increases with an increase in the concentration of fullerene molecules. In the absence of light, the nanocomposite exhibits antioxidant properties. The severity of antioxidant properties is also associated with the concentration of fullerene molecules in the polymer. It has been shown that the nanocomposite upon exposure to visible light leads to the formation of long-lived reactive protein species, and is also the reason for the appearance of such a key biomarker of oxidative stress as 8-oxoguanine in DNA. The intensity of the process increases with an increase in the concentration of fullerene molecules. In the dark, the polymer exhibits weak protective properties. It was found that under the action of light, the nanocomposite exhibits significant bacteriostatic properties, and the severity of these properties depends on the concentration of fullerene molecules. Moreover, it was found that bacterial cells adhere to the surfaces of the nanocomposite, and the nanocomposite can detach bacterial cells not only from the surfaces, but also from wetted substrates. The ability to capture bacterial cells is primarily associated with the properties of the polymer; they are weakly affected by both visible light and fullerene molecules. The nanocomposite is non-toxic to eukaryotic cells, the surface of the nanocomposite is suitable for eukaryotic cells for colonization. Due to the combination of self-healing properties, low cytotoxicity, and the presence of bacteriostatic properties, the nanocomposite can be used as a reusable dry disinfectant, as well as a material used in prosthetics.

12.
Plants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685970

RESUMO

In this work, we, for the first time, manufactured a plasma-chemical reactor operating at a frequency of 0.11 MHz. The reactor allows for the activation of large volumes of liquids in a short time. The physicochemical properties of activated liquids (concentration of hydrogen peroxide, nitrate anions, redox potential, electrical conductivity, pH, concentration of dissolved gases) are characterized in detail. Antifungal activity of aqueous solutions activated by a glow discharge has been investigated. It was shown that aqueous solutions activated by a glow discharge significantly reduce the degree of presence of phytopathogens and their effect on the germination of such seeds. Seeds of cereals (sorghum and barley) and fruit (strawberries) crops were studied. The greatest positive effect was found in the treatment of sorghum seeds. Moreover, laboratory tests have shown a significant increase in sorghum drought tolerance. The effectiveness of the use of glow-discharge-activated aqueous solutions was shown during a field experiment, which was set up in the saline semi-desert of the Northern Caspian region. Thus, the technology developed by us makes it possible to carry out the activation of aqueous solutions on an industrial scale. Water activated by a glow discharge exhibits antifungicidal activity and significantly accelerates the development of the grain and fruit crops we studied. In the case of sorghum culture, glow-discharge-activated water significantly increases drought resistance.

13.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360564

RESUMO

In recent decades, studies on the functional features of Se nanoparticles (SeNP) have gained great popularity due to their high biocompatibility, stability, and pronounced selectivity. A large number of works prove the anticarcinogenic effect of SeNP. In this work, the molecular mechanisms regulating the cytotoxic effects of SeNP, obtained by laser ablation, were studied by the example of four human cancer cell lines: A-172 (glioblastoma), Caco-2, (colorectal adenocarcinoma), DU-145 (prostate carcinoma), MCF-7 (breast adenocarcinoma). It was found that SeNP had different concentration-dependent effects on cancer cells of the four studied human lines. SeNP at concentrations of less than 1 µg/mL had no cytotoxic effect on the studied cancer cells, with the exception of the A-172 cell line, for which 0.5 µg/mL SeNP was the minimum concentration affecting its metabolic activity. It was shown that SeNP concentration-dependently caused cancer cell apoptosis, but not necrosis. In addition, it was found that SeNP enhanced the expression of pro-apoptotic genes in almost all cancer cell lines, with the exception of Caco-2 and activated various pathways of adaptive and pro-apoptotic signaling pathways of UPR. Different effects of SeNP on the expression of ER-resident selenoproteins and selenium-containing glutathione peroxidases and thioredoxin reductases, depending on the cell line, were established. In addition, SeNP triggered Ca2+ signals in all investigated cancer cell lines. Different sensitivity of cancer cell lines to SeNP can determine the induction of the process of apoptosis in them through regulation of the Ca2+ signaling system, mechanisms of ER stress, and activation of various expression patterns of genes encoding pro-apoptotic proteins.


Assuntos
Antineoplásicos/administração & dosagem , Apoptose , Citotoxinas/administração & dosagem , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Selênio/química , Antineoplásicos/química , Citotoxinas/química , Humanos , Nanopartículas/química , Transdução de Sinais , Células Tumorais Cultivadas
14.
Int J Mol Sci ; 22(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800175

RESUMO

Using a number of optical techniques (interferometry, dynamic light scattering, and spectroscopy), denaturation of hen egg white lysozyme (HEWL) by treatment with a combination of dithiothreitol (DTT) and guanidine hydrochloride (GdnHCl) has been investigated. The denaturing solutions were selected so that protein denaturation occurred with aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM) or without aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM, GdnHCl 6 M) and can be evaluated after 60 min of treatment. It has been found that denatured by solution with 6 M GdnHCl lysozyme completely loses its enzymatic activity after 30 min and the size of the protein molecule increases by 1.5 times, from 3.8 nm to 5.7 nm. Denaturation without of GdnHCl led to aggregation with preserving about 50% of its enzymatic activity. Denaturation of HEWL was examined using interferometry. Previously, it has been shown that protein denaturation that occurs without subsequent aggregation leads to an increase in the refractive index (Δn ~ 4.5 × 10-5). This is most likely due to variations in the HEWL-solvent interface area. By applying modern optical techniques conjointly, it has been possible to obtain information on the nature of time-dependent changes that occur inside a protein and its hydration shell as it undergoes denaturation.


Assuntos
Galinhas , Ditiotreitol/química , Guanidina/química , Muramidase/química , Agregados Proteicos , Desdobramento de Proteína , Animais , Espectrofotometria Ultravioleta
15.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126612

RESUMO

Long-lived luminescence in the blue region was found to occur in deionized water saturated with atmospheric gases following mechanical shaking. Luminescence intensity decreased exponentially after the cessation of stress. During vigorous mechanical shaking, we observed gas bubbles in solution, and the liquid-gas interface area increased noticeably. At the same time, the concentration of molecular oxygen decreased, which could not be attributed to the water warming up with exposure to mechanical stress. However, deaerated water rapidly became saturated with gases following mechanical stress. The recommendation that cell culture media should be mixed after they are removed from the fridge in order to allow saturation with oxygen is probably misleading. It was shown that gases existed in water both in the form of individual molecules and nanobubbles. Mechanical stress did not influence the number or size of nanobubbles. While gas nanobubbles were absent in freshly prepared deaerated water, they appeared following exposure to mechanical stress. In addition, in mechanically treated gas-saturated water, there was seemingly an equilibrium shift towards the decomposition of carbonic acid to water and carbon dioxide. At the same time, the pH of water tended to increase immediately after mechanical stress. It was demonstrated that reactive oxygen species (ROS) form in gas-saturated water under mechanical stress (30 Hz, amplitude of 5 mm). The relative generation rate of hydrogen peroxide and of the hydroxyl radical was 1 nM/min and 0.5 nM/min, respectively. It was found that with an increase in the frequency of mechanical action (f), the rate of ROS generation increased in proportion to f 2. The major pathways for hydrogen peroxide generation are probably associated with the formation of singlet oxygen and its further reduction, and the alternative pathway is the formation of hydrogen peroxide as a result of hydroxyl radical recombination.


Assuntos
Peróxido de Hidrogênio/química , Radical Hidroxila/química , Espécies Reativas de Oxigênio/química , Oxigênio Singlete/química , Estresse Mecânico , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA