Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836120

RESUMO

Stomata are crucial structures in plants that play a primary role in the infection process during a pathogen's attack, as they act as points of access for invading pathogens to enter host tissues. Recent evidence has revealed that stomata are integral to the plant defense system and can actively impede invading pathogens by triggering plant defense responses. Stomata interact with diverse pathogen virulence factors, granting them the capacity to influence plant susceptibility and resistance. Moreover, recent studies focusing on the environmental and microbial regulation of stomatal closure and opening have shed light on the epidemiology of bacterial diseases in plants. Bacteria and fungi can induce stomatal closure using pathogen-associated molecular patterns (PAMPs), effectively preventing entry through these openings and positioning stomata as a critical component of the plant's innate immune system; however, despite this defense mechanism, some microorganisms have evolved strategies to overcome stomatal protection. Interestingly, recent research supports the hypothesis that stomatal closure caused by PAMPs may function as a more robust barrier against pathogen infection than previously believed. On the other hand, plant stomatal closure is also regulated by factors such as abscisic acid and Ca2+-permeable channels, which will also be discussed in this review. Therefore, this review aims to discuss various roles of stomata during biotic and abiotic stress, such as insects and water stress, and with specific context to pathogens and their strategies for evading stomatal defense, subverting plant resistance, and overcoming challenges faced by infectious propagules. These pathogens must navigate specific plant tissues and counteract various constitutive and inducible resistance mechanisms, making the role of stomata in plant defense an essential area of study.

2.
Environ Manage ; 72(2): 382-395, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35391632

RESUMO

Biotic stress management through bio-priming is a common practice among the farmers of the Indo-Gangetic Plains. However, this indigenous technology is less explored for the sustainable management of soil resources. Therefore, field-based experiments (2016-17 and 2017-18) were conducted in Varanasi to evaluate the combined effect of seedling bio-priming and fertilization on biochemical properties, microbiological properties, and fertility of red cabbage soil at harvest. Based on the farmers' fertilization practice, the recommended dose of fertilizers (RDF) of N:P2O5:K2O were applied @ 120:60:60 kg ha-1. Three compatible bio-agents, viz., Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis were applied alone and in combination with 75% RDF. The effect of treatment combinations was also analyzed for carbon (C) mineralization by conducting an incubation experiment for 90 days. Bio-priming treatments recorded a higher richness of soil microflora and soil fertility than control and sole application of chemical fertilizers. Application of 75% RDF + T. harzianum + P. fluorescens resulted in highest urease and cellulase activities and soil organic C. Inclusion of dual-species bacterial consortium (P. fluorescens and B. subtilis) in integrated system resulted in highest dehydrogenase activity and available P. These priming agents also exhibited significantly higher CO2 fluxes and C mineralization in our incubation study. A microbial consortium of T. harzianum and B. subtilis increased the microbial biomass C and available K. Although application of triple-species consortium improved C mineralization in laboratory conditions, the positive effects lowered down in field conditions. As a bottom-up approach, customization of bio-priming technology among farmers will help in attaining the UN-Sustainable Development Goals.


Assuntos
Brassica , Solo , Humanos , Solo/química , Agricultura/métodos , Fertilizantes/análise , Fazendeiros , Índia , Microbiologia do Solo
3.
PLoS One ; 16(12): e0259645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914729

RESUMO

Conservation agriculture-based sustainable intensification (CASI) technologies comprising zero-tillage with crop residue retention (>30%) on the soil surface, diversified cropping systems, and balanced nutrient management are recognized as operative and efficacious strategies to ensure food security in the parts of South Asia. The present investigation was a component of CASI technologies undertaken in the farmers' field of Malda (old alluvial Inceptisol) Coochbehar (recent alluvial Entisol) district, West Bengal (subtropical eastern India). This study was conducted to evaluate the short-term impact of contrasting tillage (zero and conventional) and cropping systems (rice-wheat and rice-maize) on total organic carbon (TOC) and its fractions, viz., labile pool-1 (LP1), labile pool-2 (LP2) and recalcitrant carbon (RC) fractions after 4-year trial of conservation agriculture (CA) in the old and recent alluvial soils. Soil samples were collected from three depths (0-5, 5-10, and 10-20 cm), and thus, our study was focused on two factors, viz., cropping system and tillage. Results pointed that TOC along with LP1, LP2, and RC fractions under rice-maize (RM) cropping system were significantly (p<0.05) greater (15-35%) over rice-wheat (RW) system as a result of higher residue biomass addition. Zero-tillage (ZT) improved the C fractions by 10-20% over conventional tillage (CT) in all aspects. TOC and its fractions were observed to be greater under the ZT system in the topmost soil depths (0-5 and 5-10 cm), but the same system failed to improve these at 10-20 cm. Interestingly, the CT increased all the fractions at 10-20 cm depth due to the incorporation of crop residues. The concentration of TOC along with its fractions decreased with increasing soil depth was evident. Comparatively, all the C fractions, including TOC were maximum in soils from Malda sites as compared to Coochbehar sites because of a higher amount of residue biomass application, higher clay content, and greater background content of C in these soils. All the studied C fractions showed a significant correlation (r = >0.635; p<0.01) with TOC among all the soil depths in both the districts but the relationship with soil texture showed some interesting results. TOC fractions were significantly correlated (p<0.01) with clay particles indicating that its higher stabilization with clay in old alluvial Inceptisol (Malda); while in recent alluvial Entisol (Coochbehar), sand particle showed its strong relation with TOC fractions. Higher stratification ratio (SR) in the ZT system suggested that the concentration of TOC and its fractions are confined to the upper soil layers whereas in the case of CT, by and large, the distribution of these was comparatively high in subsequent soil depths due to residue incorporation effect. The concentration of C fractions in soils followed the order: TOC > RC > LP2 > LP1. The present investigation concluded that ZT under the RM system increases the turnover rates of C in both soil types but the amount of clay influences the stabilization/storage of C.


Assuntos
Carbono/análise , Solo/química , Agricultura , Índia , Oryza/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
4.
Sci Rep ; 11(1): 15680, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344947

RESUMO

Conventional agricultural practices and rising energy crisis create a question about the sustainability of the present-day food production system. Nutrient exhaustive crops can have a severe impact on native soil fertility by causing nutrient mining. In this backdrop, we conducted a comprehensive assessment of bio-priming intervention in red cabbage production considering nutrient uptake, the annual change in soil fertility, nutrient use efficiency, energy budgeting, and economic benefits for its sustainable intensification, among resource-poor farmers of Middle Gangetic Plains. The compatible microbial agents used in the study include Trichoderma harzianum, Pseudomonas fluorescens, and Bacillus subtilis. Field assays (2016-2017 and 2017-2018) of the present study revealed supplementing 75% of recommended NPK fertilizer with dual inoculation of T. harzianum and P. fluorescens increased macronutrient uptake (N, P, and K), root length, heading percentage, head diameter, head weight, and the total weight of red cabbage along with a positive annual change in soil organic carbon. Maximum positive annual change in available N and available P was recorded under 75% RDF + P. fluorescens + B. subtilis and 75% RDF + T. harzianum + B. subtilis, respectively. Bio-primed plants were also higher in terms of growth and nutrient use efficiency (agronomic efficiency, physiological efficiency, apparent recovery efficiency, partial factor productivity). Energy output (26,370 and 26,630 MJ ha-1), energy balance (13,643 and 13,903 MJ ha-1), maximum gross return (US $ 16,030 and 13,877 ha-1), and net return (US $ 15,966 and 13,813 ha-1) were considerably higher in T. harzianum, and P. fluorescens treated plants. The results suggest the significance of the bio-priming approach under existing integrated nutrient management strategies and the role of dual inoculations in producing synergistic effects on plant growth and maintaining the soil, food, and energy nexus.


Assuntos
Brassica/fisiologia , Fertilização , Microbiota , Minerais , Nutrientes , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Rizosfera , Carbono/química , Produção Agrícola , Metabolismo Energético , Fertilizantes , Nitrogênio/química , Nitrogênio/metabolismo , Solo/química
5.
FEMS Microbiol Ecol ; 96(12)2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33150926

RESUMO

Managing agrochemicals for crop production always remains a classic challenge for us to maintain the doctrine of sustainability. Intensively cultivated rice-wheat production system without using the organics (organic amendments, manures, biofertilizers) has a tremendous impact on soil characteristics (physical, chemical, and biological), environmental quality (water, air), input use efficiency, ecosystem biodiversity, and nutritional security. Consequently, crop productivity is found to be either decreasing or stagnating. Rice-wheat cropping system is the major agroecosystem in India feeding millions of people, which is widely practiced in the Indo-Gangetic Plains (IGP). Microorganisms as key players in the soil system can restore the degraded ecosystems using a variety of mechanisms. Here, we propose how delivery systems (i.e., the introduction of microbes in seed, soil, and crop through bio-priming and/or bioaugmentation) can help us in eradicating food scarcity and maintaining sustainability without compromising the ecosystem services. Both bio-priming and bioaugmentation are efficient techniques to utilize bio-agents judiciously for successful crop production by enhancing phytohormones, nutrition status, and stress tolerance levels in plants (including mitigating of abiotic stresses and biocontrol of pests/pathogens). However, there are some differences in application methods, and the latter one also includes the aspects of bioremediation or soil detoxification. Overall, we have highlighted different perspectives on applying biological solutions in the IGP to sustain the dominant (rice-wheat) cropping sequence.


Assuntos
Oryza , Triticum , Agricultura , Ecossistema , Humanos , Índia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA