Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUBMB Life ; 75(10): 782-793, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37086465

RESUMO

The bimetallic enzyme arginase catalyses the conversion of L-arginine to L-ornithine and urea. In Helicobacter pylori (a known human gastric pathogen), this enzyme is an important virulence factor. In spite of the conservation of the catalytic and the metal-binding residues, the H. pylori homolog possesses a 13-residue motif (-153 ESEEKAWQKLCSL165 -) present in the middle of the protein sequence, whose role was recently elucidated. Despite several reviews available on arginases, no report has thoroughly illustrated the underlying basis for the importance of the above motif of the H. pylori enzyme in structure and function. In this review, we systematically describe a mechanistic basis for its importance in structure and function based on the known data. This motif of the H. pylori enzyme is present exclusively in the arginases of other Helicobacter gastric pathogens, where the critical residues are conserved, implying that the nonconserved stretch has been selected during the evolution of the enzyme in these gastric pathogens in a specific manner to perform its role in the structure and function. The combined information can be useful for understanding the function of arginases in other Helicobacter gastric pathogens. Additionally, this knowledge can be utilised to screen and design new small molecule inhibitors, specific to the arginases of these pathogens.


Assuntos
Helicobacter pylori , Helicobacter , Humanos , Arginase/genética , Arginase/química , Helicobacter/metabolismo , Helicobacter pylori/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química
2.
Biophys J ; 121(2): 248-262, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932956

RESUMO

Polyamines are essential for cell growth and proliferation. In plants and many bacteria, including Helicobacter pylori, the parent polyamine putrescine is only produced through the metabolism of N-carbamoylputrescine by N-carbamoylputrescine amidase (CPA). Thus, CPA is a crucial intermediate enzyme. Moreover, the absence of CPA in humans makes its presence in H. pylori a potential target for the development of new therapeutics against this pathogen. Despite this enzyme's presence in plants and bacteria, its function is not completely explored. Using structure-guided biochemical and biophysical studies on H. pylori CPA, we discovered an aromatic cluster containing four conserved tryptophans near the catalytic site and elucidated its role. Mutational studies revealed that they are individually vital to enzyme function. Unlike wild-type, which forms a hexamer, the Trp to Ala mutants only formed dimers. Interestingly, two other conserved residues, Gln155 and Asp278, interact with the tryptophan cluster and perform similar roles. Our results indicate that aromatic-aromatic and H-bonding contacts between the residues (Trp156-Trp273, Trp196-Gln155, and Trp153-Asp278) play a crucial role in stimulating activity through hexamer formation. Additionally, Trp156 is essential to generating a catalytically efficient hexamer. These results suggest dual roles for the tryptophans; in hexamer formation and in generating its functionally active form, thereby providing a mechanistic understanding into the role of the cluster. We also elucidated the catalytic roles of Glu43, Lys115, and Cys152, which are present at the active site. Our findings highlight, for the first time, the importance of a tryptophan cluster in H. pylori CPA that can be exploited to design therapeutic inhibitors.


Assuntos
Helicobacter pylori , Catálise , Domínio Catalítico , Humanos , Triptofano/metabolismo
3.
Biochem J ; 478(4): 871-894, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33480396

RESUMO

The binuclear metalloenzyme Helicobacter pylori arginase is important for pathogenesis of the bacterium in the human stomach. Despite conservation of the catalytic residues, this single Trp enzyme has an insertion sequence (-153ESEEKAWQKLCSL165-) that is extremely crucial to function. This sequence contains the critical residues, which are conserved in the homolog of other Helicobacter gastric pathogens. However, the underlying basis for the role of this motif in catalytic function is not completely understood. Here, we used biochemical, biophysical and molecular dynamics simulations studies to determine that Glu155 of this stretch interacts with both Lys57 and Ser152. These interactions are essential for positioning of the motif through Trp159, which is located near Glu155 (His122-Trp159-Tyr125 contact is essential to tertiary structural integrity). The individual or double mutation of Lys57 and Ser152 to Ala considerably reduces catalytic activity with Lys57 to Ala being more significant, indicating they are crucial to function. Our data suggest that the Lys57-Glu155-Ser152 interaction influences the positioning of the loop containing the catalytic His133 so that this His can participate in catalysis, thereby providing a mechanistic understanding into the role of this motif in catalytic function. Lys57 was also found only in the arginases of other Helicobacter gastric pathogens. Based on the non-conserved motif, we found a new molecule, which specifically inhibits this enzyme. Thus, the present study not only provides a molecular basis into the role of this motif in function, but also offers an opportunity for the design of inhibitors with greater efficacy.


Assuntos
Arginase/química , Proteínas de Bactérias/química , Helicobacter pylori/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/química , Animais , Arginase/antagonistas & inibidores , Arginase/genética , Arginina/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Catálise , Cobalto/metabolismo , Sequência Conservada , Polarização de Fluorescência , Gastrite/microbiologia , Gastrite/veterinária , Helicobacter/enzimologia , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/veterinária , Helicobacter pylori/genética , Humanos , Hidrólise , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Mutação Puntual , Estrutura Secundária de Proteína , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA