Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1739, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409108

RESUMO

Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.


Assuntos
Transtornos de Estresse por Calor , Lipopolissacarídeos , Humanos , Gasderminas , Morte Celular , Inflamação/genética , Caspases/genética , Resposta ao Choque Térmico/genética , Piroptose , Apoptose , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
2.
PLoS One ; 19(2): e0299577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412164

RESUMO

Regulated cell death is a key component of the innate immune response, which provides the first line of defense against infection and homeostatic perturbations. However, cell death can also drive pathogenesis. The most well-defined cell death pathways can be categorized as nonlytic (apoptosis) and lytic (pyroptosis, necroptosis, and PANoptosis). While specific triggers are known to induce each of these cell death pathways, it is unclear whether all cell types express the cell death proteins required to activate these pathways. Here, we assessed the protein expression and compared the responses of immune and non-immune cells of human and mouse origin to canonical pyroptotic (LPS plus ATP), apoptotic (staurosporine), necroptotic (TNF-α plus z-VAD), and PANoptotic (influenza A virus infection) stimuli. When compared to fibroblasts, both mouse and human innate immune cells, macrophages, expressed higher levels of cell death proteins and activated cell death effectors more robustly, including caspase-1, gasdermins, caspase-8, and RIPKs, in response to specific stimuli. Our findings highlight the importance of considering the cell type when examining the mechanisms regulating inflammation and cell death. Improved understanding of the cell types that contain the machinery to execute different forms of cell death and their link to innate immune responses is critical to identify new strategies to target these pathways in specific cellular populations for the treatment of infectious diseases, inflammatory disorders, and cancer.


Assuntos
Necroptose , Piroptose , Humanos , Animais , Camundongos , Apoptose , Morte Celular , Caspase 1
3.
Microbes Infect ; 26(3): 105277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38103861

RESUMO

How therapeutically administered myeloid derived suppressor cells (MDSCs) modulate differentiation of virus-specific CD8+ T cell was investigated. In vitro generated MDSCs from bone marrow precursors inhibited the expansion of stimulated CD8+ T cells but the effector cells in the recipients of MDSCs showed preferential memory transition during Influenza A virus (IAV) or an α- (Herpes Simplex Virus) as well as a γ- (murine herpesvirus 68) herpesvirus infection. Memory CD8+ T cells thus generated constituted a heterogenous population with a large fraction showing effector memory (CD62LloCCR7-) phenotype. Such cells could be efficiently recalled in the rechallenged animals and controlled the secondary infection better. Memory potentiating effects of MDSCs occurred irrespective of the clonality of the responding CD8+ T cells as well as the nature of infecting viruses. Compared to the MDSCs recipients, effector cells of MDSCs recipients showed higher expression of molecules known to drive cellular survival (IL-7R, Bcl2) and memory formation (Tcf7, Id3, eomesodermin). Therapeutically administered MDSCs not only mitigated the tissue damaging response during a resolving IAV infection but also promoted the differentiation of functional memory CD8+ T cells. Therefore, MDSCs therapy could be useful in managing virus-induced immunopathological reactions without compromising immunological memory.


Assuntos
Células Supressoras Mieloides , Camundongos , Animais , Linfócitos T CD8-Positivos , Memória Imunológica , Camundongos Endogâmicos C57BL
4.
Cell ; 186(13): 2783-2801.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267949

RESUMO

Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1ß and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.


Assuntos
Inflamassomos , Moléculas com Motivos Associados a Patógenos , Animais , Camundongos , Inflamassomos/metabolismo , Heme , Inflamação , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular
6.
iScience ; 25(7): 104549, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35702569

RESUMO

We report robust SARS-CoV2 neutralizing sdAbs targeting the viral peptides encompassing the polybasic cleavage site (CSP) and in the receptor binding domain (RBD) of the spike (S) protein. Both the sdAbs inhibited infectivity of the CoV2 S protein expressing pseudoviruses (LV-CoV2S). Both anti-CSP and RBD intrabodies (IB) inhibited the output of LV(CoV2 S). Anti-CSP IB altered the proteolytic processing and targeted the viral S protein for degradation. Because of cross-reactive CSPs in the entry mediators, the anti-CSP sdAb neutralized in vitro and in vivo the infectivity of SARS-CoV2 unrelated viruses such as herpes simplex virus 1 (HSV1) and pestes des petits ruminants virus (PPRV). Conversely, anti-HSV1 and anti-PPRV sera neutralized LV(CoV2 S) owing to the presence of CSP reactive antibodies indicating that a prior infection with such pathogens could impact on the pattern of COVID-19.

7.
Front Immunol ; 12: 630307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912160

RESUMO

The study was aimed at developing an accessible laboratory animal model to elucidate protective and pathological roles of immune mediators during Peste des petits ruminants virus (PPRV) infection. It is because of the critical roles of type I IFNs in anti-viral defense, we assessed the susceptibility of IFN receptor knock out (IFNR KO) mice to PPRV infection. IFNR KO mice were exceedingly susceptible to the infection but WT animals efficiently controlled PPRV. Accordingly, the PPRV infected IFNR KO mice gradually reduced their body weights and succumbed to the infection within 10 days irrespective of the dose and route of infection. The lower infecting doses predominantly induced immunopathological lesions. The viral antigens as well as the replicating PPRV were abundantly present in most of the critical organs such as brain, lungs, heart and kidneys of IFNR KO mice infected with high dose of the virus. Neutrophils and macrophages transported the replicating virus to central nervous system (CNS) and contributed to pathology while the elevated NK and T cell responses directly correlated with the resolution of PPRV infection in WT animals. Using an array of fluorescently labeled H-2Kb tetramers, we discovered four immunogenic epitopes of PPRV. The PPRV-peptides interacted well with H-2Kb in acellular and cellular assay as well as expanded the virus-specific CD8+ T cells in immunized or infected mice. Adoptively transferred CD8+ T cells helped control PPRV in infected mice. Our study therefore established and employed a mouse model for investigating the pathogenesis of PPRV. The model could be useful for elucidating the contribution of immune cells in disease progression as well as to test anti-viral agents.


Assuntos
Peste dos Pequenos Ruminantes/imunologia , Animais , Encéfalo/virologia , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Antígenos H-2/imunologia , Imunidade Inata , Imunização , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Peste dos Pequenos Ruminantes/mortalidade , Peste dos Pequenos Ruminantes/patologia , Vírus da Peste dos Pequenos Ruminantes/imunologia , Receptores de Interferon/fisiologia , Vacinas Virais/imunologia
8.
Bio Protoc ; 11(24): e4255, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35087915

RESUMO

Here, we describe a combinatorial approach in reverse vaccinology to identify immunogenic class I major histocompatibility complex (MHC) displayed epitopes derived from a morbillivirus named pestes des petits ruminants (PPRV). The protocol describes an in silico prediction of immunogenic epitopes using an IEDB tool. The predicted peptides were further analysed by molecular docking with mouse class I MHC (H-2Kb), to assess their binding affinity, and their immunogenicity was validated, using acellular and cellular assays. Finally, an enumeration of the expanded PPRV-specific CD8+ T cells in infected or immunized mice against the immunogenic peptides was performed ex vivo. Synthetic peptide derivatives from different structural and non-structural proteins of PPRV were used to measure the extent of stabilized H2-Kb, using an ELISA based acellular assay and TAP deficient RMA/s cells. Fluorescently labelled H2-Kb-tetramers were generated by displacing a UV photocleavable conditional ligand with the PPRV-peptides. The resulting reagents were used to identify and enumerate virus-specific CD8+ T cells in immunized or PPRV-infected mice. The combinatorial approach described here could be used to identify immunogenic epitopes of any pathogen, autoantigens, as well as cancer antigens. Graphic abstract: Figure 1.General schematic to identify immunogenic peptides and their stabilization on MHC I molecule.

9.
Biochem Mol Biol Educ ; 48(3): 227-235, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31899597

RESUMO

Undergraduate laboratory courses, owing to their larger sizes and shorter time slots, are often conducted in highly structured modes. However, this approach is known to interfere with students' engagement in the experiments. To enhance students' engagement, we propose an alternative mode of running laboratory courses by creating some "disorder" in a previously adopted structure. After performing an experiment in the right way, the students were asked to repeat the experiment but with a variation at certain steps leading to the experiment being done the "wrong" way. Although this approach led to fewer experiments being conducted in a semester, it significantly enhanced the students' involvement. This was also reflected in the students' feedback. The majority of students preferred repeating an experiment with a variant protocol than performing a new experiment. Although we have tested this inquiry-based approach only for an undergraduate laboratory course in molecular biology, we believe such an approach could also be extended to undergraduate laboratory courses of other subjects.


Assuntos
Genética/educação , Aprendizagem , Biologia Molecular/educação , Currículo , Escherichia coli , Humanos , Índia , Laboratórios , Microbiologia/educação , Pesquisa , Estudantes , Universidades
10.
J Immunol ; 203(5): 1325-1337, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31331972

RESUMO

In this study, we investigated the response of myeloid-derived suppressor cells (MDSCs) during the pathogenesis of an immunoblinding disease of the cornea caused by HSV type 1 infection. We also measured the anti-inflammatory potential of in vitro-differentiated MDSCs in dampening herpetic stromal keratitis resulting from primary ocular HSV1 infection in mice. In the lymphoid organs and inflamed corneal tissues, MDSCs were phenotypically characterized as CD11b+Gr1lo-int cells. Sorted CD11b+Gr1lo-int cells, but not CD11b+Gr1hi cells, suppressed the proliferation and cytokine production by stimulated CD4+ T cells. In vitro-generated MDSCs inhibited the activity of stimulated CD4+ T cells in a predominantly contact-dependent manner. An adoptive transfer of in vitro-generated MDSCs before or after ocular HSV1 infection controlled herpetic stromal keratitis lesions. The transferred MDSCs were primarily recovered from the lymphoid organs of recipients. Surprisingly, MDSCs recipients expanded their endogenous Foxp3+ regulatory T cells (Tregs). We further demonstrated the MDSCs mediated stabilization of Foxp3 expression in already differentiated Tregs and their ability to cause an efficient de novo conversion of Foxp3+ Tregs from stimulated Foxp3-CD4+ T cells. These effects occurred independent of TGF-ß signaling. Therefore, the therapeutic potential of MDSCs could be harnessed as a multipronged strategy to confer an infectious tolerance to the host by activating endogenous regulatory mechanisms.


Assuntos
Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/imunologia , Inflamação/imunologia , Células Supressoras Mieloides/imunologia , Transferência Adotiva/métodos , Animais , Antígeno CD11b/imunologia , Linfócitos T CD4-Positivos/imunologia , Proliferação de Células/fisiologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Inflamação/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/virologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA