Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Behav ; 269: 114252, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257737

RESUMO

Vitamin K2/ Menaquinones produced predominantly by the gut microbiome improve bone health and prevent coronary calcification. The central nervous system has been linked with gut microbiota via the gut-brain axis and is strongly associated with psychiatric conditions. In the present study, we show the role of Vitamin K2 (MK-7) in gut dysbiosis-associated cognitive decline. Gut dysbiosis was induced in mice by administering Ampicillin (250 mg/kg twice a day orally) for 14 days and Vitamin K2 (0.05 mg/kg) for 21 days with or without antibiotic treatment and altered gene expression profile of intestinal microbes determined. This was followed by behavioural studies to determine cognitive changes. The behavioural observations are then correlated with proinflammatory, oxidative, and brain and intestinal histopathological changes in antibiotic-treated animals with or without vitamin K2 administration. With the use of antibiotics, Lactobacillus, Bifidobacterium, Firmicutes, and Clostridium's relative abundance reduced. When vitamin K2 was added to the medication, their levels were restored. Cognitive impairment was observed in behavioural trials in the antibiotic group, but this drop was restored in mice given both an antibiotic and vitamin K. Myeloperoxidase levels in the colon and brain increased due to gut dysbiosis, which vitamin K2 prevented. The acetylcholine esterase and oxidative stress markers brought on by antibiotics were also decreased by vitamin K2. Additionally, vitamin K2 guarded against alterations in intestine ultrastructure brought on by antibiotic use and preserved hippocampus neurons. So, it can be concluded that vitamin K2 improved cognitive skills, avoided hippocampus neuronal damage from antibiotics, and lowered intestine and brain inflammation and oxidative stress.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Camundongos , Animais , Vitamina K 2/farmacologia , Vitamina K 2/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Disbiose/complicações , Disbiose/tratamento farmacológico , Antibacterianos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/complicações
2.
J Neuroimmune Pharmacol ; 17(1-2): 94-110, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35043295

RESUMO

Oligosaccharides are potential prebiotic which maintains gut microbiota and improves gut health. The association of gut and brain is named as gut-brain-axis. Gut dysbiosis disrupts gut-brain-axis and effectively contributes to psychiatric disorders. In the present study, Xylo-oligosaccharide (XOS) and Quercetin were used as therapeutic interventions against gut dysbiosis mediated cognitive decline. Gut dysbiosis was established in mice through administration of Ampicillin Sodium, orally for 14 days. XOS and quercetin were administered separately or in combination along with antibiotic. Gene expression studies using mice faecal samples showed both XOS and quercetin could revive Lactobacillus, Bifidobacterium, Firmicutes and Clostridium which were reduced due to antibiotic treatment. FITC-dextran concentration in serum revealed XOS and quercetin protected intestinal barrier integrity against antibiotic associated damage. This was verified by histopathological studies showing restored intestinal architecture. Moreover, intestinal inflammation which increased after antibiotic treated animals was reduced upon XOS and quercetin treatment. Behavioural studies demonstrated that gut dysbiosis reduced fear conditioning, spatial and recognition memory which were reversed upon XOS and quercetin treatment. XOS and quercetin also reduced inflammation and acetylcholine esterase which were heightened in antibiotic treated animal brain. They also reduced oxidative stress, pro-inflammatory cytokines and chemokines and protected hippocampal neurons. In conclusion, XOS and quercetin effectively reduced antibiotic associated gut dysbiosis and prevented gut dysbiosis associated cognitive decline in mice.


Assuntos
Disfunção Cognitiva , Prebióticos , Animais , Camundongos , Quercetina , Medo , Antibacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA