Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(13): e2300713, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37572690

RESUMO

Renewable-electricity-powered carbon dioxide (CO2) reduction (eCO2R) to high-value fuels like methane (CH4) holds the potential to close the carbon cycle at meaningful scales. However, this kinetically staggered 8-electron multistep reduction suffers from inadequate catalytic efficiency and current density. Atomic Cu-structures can boost eCO2R-to-CH4 selectivity due to enhanced intermediate binding energies (BEs) resulting from favorably shifted d-band centers. In this work, 2D carbon nitride (CN) matrices, viz. Na-polyheptazine (PHI) and Li-polytriazine imides (PTI), are exploited to host Cu-N2 type single-atom sites with high density (≈1.5 at%), via a facile metal-ion exchange process. Optimized Cu loading in nanocrystalline Cu-PTI maximizes eCO2R-to-CH4 performance with Faradaic efficiency (FECH4) of ≈68% and a high partial current density of 348 mA cm-2 at -0.84 V vs reversible hydrogen electrode (RHE), surpassing the state-of-the-art catalysts. Multi-Cu substituted N-appended nanopores in the CN frameworks yield thermodynamically stable quasi-dual/triple sites with large interatomic distances dictated by the pore dimensions. First-principles calculations elucidate the relative Cu-CN cooperative effects between the matrices and how the Cu local environment dictates the adsorbate BEs, density of states, and CO2-to-CH4 energy profile landscape. The 9N pores in Cu-PTI yield cooperative Cu-Cu sites that synergistically enhance the kinetics of the rate-limiting steps in the eCO2R-to-CH4 pathway.

2.
EES Catal ; 1(4): 539-551, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37426696

RESUMO

Electrochemical routes for the valorization of biomass-derived feedstock molecules offer sustainable pathways to produce chemicals and fuels. However, the underlying reaction mechanisms for their electrochemical conversion remain elusive. In particular, the exact role of proton-electron coupled transfer and electrocatalytic hydrogenation in the reaction mechanisms for biomass electroreduction are disputed. In this work, we study the reaction mechanism underlying the electroreduction of furfural, an important biomass-derived platform chemical, combining grand-canonical (constant-potential) density functional theory-based microkinetic simulations and pH dependent experiments on Cu under acidic conditions. Our simulations indicate the second PCET step in the reaction pathway to be the rate- and selectivity-determining step for the production of the two main products of furfural electroreduction on Cu, i.e., furfuryl alcohol and 2-methyl furan, at moderate overpotentials. We further identify the source of Cu's ability to produce both products with comparable activity in their nearly equal activation energies. Furthermore, our microkinetic simulations suggest that surface hydrogenation steps play a minor role in determining the overall activity of furfural electroreduction compared to PCET steps due to the low steady-state hydrogen coverage predicted under reaction conditions, the high activation barriers for surface hydrogenation and the observed pH dependence of the reaction. As a theoretical guideline, low pH (<1.5) and moderate potential (ca. -0.5 V vs. SHE) conditions are suggested for selective 2-MF production.

3.
Adv Mater ; 35(14): e2211022, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739474

RESUMO

Atomic Fe in N-doped carbon (FeNC) electrocatalysts for oxygen (O2 ) reduction at the cathode of proton exchange membrane fuel cells are the most promising alternative to platinum-group-metal catalysts. Despite recent progress on atomic FeNC O2  reduction, their controlled synthesis and stability for practical applications remain challenging. A two-step synthesis approach has recently led to significant advances in terms of Fe-loading and mass activity; however, the Fe utilization remains low owing to the difficulty of building scaffolds with sufficient porosity that electrochemically exposes the active sites. Herein, this issue is addressed by coordinating Fe in a highly porous nitrogen-doped carbon support (≈3295 m2  g-1 ), prepared by pyrolysis of inexpensive 2,4,6-triaminopyrimidine and a Mg2+ salt active site template and porogen. Upon Fe coordination, a high electrochemical active site density of 2.54 × 1019  sites gFeNC -1  and a record 52% FeNx electrochemical utilization based on in situ nitrite stripping are achieved. The Fe single atoms are characterized pre- and post-electrochemical accelerated stress testing by aberration-corrected high-angle annular dark field scanning transmission electron microscopy, showing no Fe clustering. Moreover, ex situ X-ray absorption spectroscopy and low-temperature Mössbauer spectroscopy suggest the presence of penta-coordinated Fe sites, which are further studied by density functional theory calculations.

4.
Chem Rev ; 123(5): 2311-2348, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36354420

RESUMO

The development of efficient and sustainable electrochemical systems able to provide clean-energy fuels and chemicals is one of the main current challenges of materials science and engineering. Over the last decades, significant advances have been made in the development of robust electrocatalysts for different reactions, with fundamental insights from both computational and experimental work. Some of the most promising systems in the literature are based on expensive and scarce platinum-group metals; however, natural enzymes show the highest per-site catalytic activities, while their active sites are based exclusively on earth-abundant metals. Additionally, natural biomass provides a valuable feedstock for producing advanced carbonaceous materials with porous hierarchical structures. Utilizing resources and design inspiration from nature can help create more sustainable and cost-effective strategies for manufacturing cost-effective, sustainable, and robust electrochemical materials and devices. This review spans from materials to device engineering; we initially discuss the design of carbon-based materials with bioinspired features (such as enzyme active sites), the utilization of biomass resources to construct tailored carbon materials, and their activity in aqueous electrocatalysis for water splitting, oxygen reduction, and CO2 reduction. We then delve in the applicability of bioinspired features in electrochemical devices, such as the engineering of bioinspired mass transport and electrode interfaces. Finally, we address remaining challenges, such as the stability of bioinspired active sites or the activity of metal-free carbon materials, and discuss new potential research directions that can open the gates to the implementation of bioinspired sustainable materials in electrochemical devices.

5.
J Mater Chem A Mater ; 10(11): 6023-6030, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35401983

RESUMO

Single-atom catalysts, in particular the Fe-N-C family of materials, have emerged as a promising alternative to platinum group metals in fuel cells as catalysts for the oxygen reduction reaction. Numerous theoretical studies have suggested that dual atom catalysts can appreciably accelerate catalytic reactions; nevertheless, the synthesis of these materials is highly challenging owing to metal atom clustering and aggregation into nanoparticles during high temperature synthesis treatment. In this work, dual metal atom catalysts are prepared by controlled post synthetic metal-coordination in a C2N-like material. The configuration of the active sites was confirmed by means of X-ray adsorption spectroscopy and scanning transmission electron microscopy. During oxygen reduction, the catalyst exhibited an activity of 2.4 ± 0.3 A gcarbon -1 at 0.8 V versus a reversible hydrogen electrode in acidic media, comparable to the most active in the literature. This work provides a novel approach for the targeted synthesis of catalysts containing dual metal sites in electrocatalysis.

6.
Nanoscale ; 12(44): 22718-22734, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33170196

RESUMO

We report a novel s-tetrazine based covalent organic framework (TZA-COF) and its hybrid nanocomposites with reduced graphene oxide (TZA-COF-rGO) and Co metal to illustrate novel structure-activity relationships in this class of compounds for electrocatalytic oxygen reduction reaction (ORR). The Co-impregnated hybrid composites (TZA-COF-rGO-Co) were further annealed to yield Co-encapsulated nitrogen doped graphitic carbon (Co@NC-600), which exhibited excellent ORR activity comparable to that of the state-of-the art Pt/C in terms of onset potential, E1/2 (half-wave potential), 4e- reduction selectivity and methanol tolerance. Sequential mechanistic analyses of activity enhancement and electron transfer pathways for the ORR, at different stages of controlled catalyst engineering, elucidated the crucial role of active sites and overall catalyst nature in tuning the ORR mechanism. Co@NC-600 also exhibited high oxygen evolution reaction (OER) activity under alkaline conditions which makes it one of the most efficient non-precious metal bifunctional catalysts, capable of catalyzing complex 4e- reduction processes like the ORR and OER.

7.
ACS Omega ; 5(24): 14494-14501, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32596587

RESUMO

In this study, we report an enormously simple green approach for the synthesis of polyaniline hybrid (PANI-SO) nanofibers in emeraldine salt form. We have carried out the synthesis via an interfacial polymerization method using vegetable oil as an organic phase instead of the commonly used solvents like CHCl3, CCl4, etc. Characterization techniques such as Fourier transform infrared (FTIR), UV-visible, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used for studying the synthesized polyaniline hybrid nanofibers. An interesting observation is the crystallization of small organic molecules in the PANI matrix. PANI-SO shows a pseudocapacitance behavior with a capacitance value of 302 F g-1 at a current density of 1 A g-1. In addition, the material shows an energy density of 26.8 W h kg-1 and a maximum power density of 402.6 W kg-1. Furthermore, the PANI-SO electrode maintains about 84% of the initial capacitance after 1000 cycles. Similarly, the PANI-SO symmetric solid-state supercapacitor shows an areal capacitance of 118.7 mF cm-2 and retains a stability of 80% even after 1000 cycles. Thus, the PANI-SO electrode shows a good cyclic performance, which implies the structural stability of PANI-SO nanofibers. The electrochemical properties of PANI-SO are compared with those of PANI nanofibers synthesized by taking CHCl3 as the organic phase and keeping all other parameters identical. PANI-SO is observed to be a superior material compared to the latter one. All electrochemical analyses show that the PANI synthesized using cooking soyabean oil (PANI-SO) is an effective supercapacitor material.

8.
ACS Appl Mater Interfaces ; 11(41): 37602-37616, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545585

RESUMO

Intermetallic compounds (IMCs) have diverse electronic and geometrical properties to offer. However, the synthesis of intermetallic nanoparticles is not always easy; developing new methodologies that are conventional for many systems can be challenging, especially when incorporating highly electropositive metals to reduce to IMCs using solution synthesis methodologies. In this study, we report a comprehensive approach to access nanocrystalline PdxMy (M = Cu, Zn, Ga, Ge, Sn, Pb, Cd, In) intermetallic (IM) via the coreduction method employing sodium borohydride as the reductant. A combination of diffraction, spectroscopic, and microscopic techniques were performed to characterize the formed nanoparticles in terms of their phase composition, purity, particle size distribution, and surface oxidation properties of metals, respectively. IMCs of Pd with the elements such as Cu, Zn, Ga, and Ge exhibited higher catalytic activity that with elements such as In, Sn, Pb, and Cd. The DFT studies on these compounds revealed that the adsorption of benzylamine at the Pd site and the dissociative adsorption of O2 on the IM surface play a significant effect on catalytic activity. Among them, PdCu IM exhibited an excellent conversion of benzylamine (94.0%), with 92.2% of dibenzylimine selectivity compared to other IMCs. Moreover, PdCu exhibited decent recyclability and activity for the oxidation of different substituted primary amines.

9.
J Phys Condens Matter ; 31(16): 165401, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30677001

RESUMO

High pressure Raman spectroscopy studies on 1T-TiSe2 were carried out up to ~20.5 GPa. Based on the anomalies in phonon linewidth (lifetime) and phonon frequency of A 1g mode, we observe three transitions at ~2.5 GPa, ~6.0 GPa and ~15 GPa. The transitions at ~2.5 and ~6.0 GPa are the two topological phase transitions consistent with the theoretical prediction by Zhu et al in 1T-TiSe2 under pressure, namely, a topological trivial to non-trivial transition (Z 2 = 1) and topological non-trivial to trivial transition (Z 2 = 0). The trigonal (1T) phase of TiSe2 is stable up to ~15 GPa beyond which it undergoes structural transition as seen from the appearance of new Raman modes. There is a coexistence of the 1T and the new high-pressure phase up to ~19 GPa. The structural transition is completely reversible as seen from the appearance of 1T phase Raman spectra upon release of the pressure.

10.
Inorg Chem ; 57(20): 12576-12587, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30281284

RESUMO

In this work, we have discovered the anisotropic near-zero thermal expansion (NZTE) behavior in a family of compounds REAg xGa4- x ( RE = La-Nd, Sm, Eu, and Yb). The compounds adopt the CeAl2Ga2 structure type and were obtained as single crystals in high yield by metal flux growth technique using gallium as active flux. Temperature-dependent single crystal X-ray diffraction suggests that all the compounds exhibit near zero thermal expansion along c direction in the temperature range of 100-450 K. Temperature-dependent X-ray absorption near-edge spectroscopic study confirmed ZTE behavior is due to the geometrical features associated within the crystal structure. The anisotropic NZTE behavior was further established by anisotropic magnetic measurements on selected single crystals. The atomic displacement parameters, apparent bond lengths, bond angles, and structural distortion with respect to the temperature reveal that geometric features associated with the structural distortion cause the anisotropic NZTE along c-direction. The preliminary magnetic studies suggest all the compounds are paramagnetic at room temperature except LaAgGa3. Electrical resistivity study reveals that compounds from this series are metallic in nature.

11.
Dalton Trans ; 47(24): 7864-7869, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29741540

RESUMO

Recent advances in the field of small organic molecule oxidation (SOMO) demand a detailed and strategic approach towards designing efficient catalysts. This frontier article briefly summarizes the mechanism and understanding of electrochemical oxidation of small molecules such as ethanol, methanol and formic acid on Pd based compounds. This article contributes significantly to the logical understanding and correlation of experimental and theoretical research prevalent in this area. Using this understanding, one can identify essential characteristics requisite for an efficient electrocatalyst, careful evaluation of which can suggest new materials for use as electrocatalysts. This article is not comprehensive, and will mainly focus on the results obtained in our research group and similar studies performed in other groups.

12.
ACS Appl Mater Interfaces ; 9(4): 3602-3615, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28067036

RESUMO

Synthesis of ordered compounds with nano size is of particular interest for tuning the surface properties with enhanced activity and selectivity toward various important industrial catalytic processes. In this work, we synthesized ordered PdCu nanoparticles as highly efficient catalyst for the solvent-free aerobic oxidation of benzylamine. The PdxCu1-x catalysts with different chemical compositions (x = 0, 0.25, 0.4, 0.5, 0.6, 0.75, 1) were prepared by polyol method using NaBH4 as a reducing agent and were well-characterized by X-ray diffraction (XRD), inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy (TEM) energy-dispersive analysis of X-rays, and X-ray absorption fine structure. The effect of different metal concentrations of Pd and Cu on the formation of PdxCu1-x nanoparticles was investigated. The XRD and TEM confirmed the formation of ordered PdCu intermetallic phase with body-centered cubic (BCC) structure for the synthetic composition of Pd/Cu = 1:1. For compositions x = 0, 0.25, 0.75, and 1, PdxCu1-x alloy with face-centered cubic (FCC) structure was observed, whereas mixed phase of BCC and FCC was observed for x = 0.4 and 0.6. The use of strong reducing agent (NaBH4) was essential to synthesize PdCu ordered phase compared to weak reducing agents such as oleylamine and ascorbic acid. The PdCu nanocatalyst with ordered structure (BCC) showed excellent catalytic activity compared to PdxCu1-x alloy nanoparticles with FCC structure. The atomic ordering in the PdCu intermetallic was the driving force for the enhancement in the catalytic activity with high benzylamine conversion of 94.0% and dibenzylimine selectivity of 92.2% compared to its monometallic and alloy counterparts. Moreover, ordered PdCu alloy showed good recyclability and activity toward the oxidation of different amines.

13.
Inorg Chem ; 55(20): 10351-10360, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27676392

RESUMO

Single crystals (SCs) of the compounds Eu3Ag2In9 and EuCu2Ge2 were synthesized through the reactions run in liquid indium. Eu3Ag2In9 crystallizes in the La3Al11 structure type [orthorhombic space group (SG) Immm] with the lattice parameters: a = 4.8370(1) Å, b = 10.6078(3) Å, and c = 13.9195(4) Å. EuCu2Ge2 crystallizes in the tetragonal ThCr2Si2 structure type (SG I4/mmm) with the lattice parameters: a = b = 4.2218(1) Å, and c = 10.3394(5) Å. The crystal structure of Eu3Ag2In9 is comprised of edge-shared hexagonal rings consisting of indium. The one-dimensional chains of In6 rings are shared through the edges, which are further interconnected with other six-membered rings forming a three-dimensional (3D) stable crystal structure along the bc plane. The crystal structure of EuCu2Ge2 can be explained as the complex [CuGe](2+δ)- polyanionic network embedded with Eu ions. These polyanionic networks present in the crystal structure of EuCu2Ge2 are shared through the edges of the 011 plane containing Cu and Ge atoms, resulting in a 3D network. The structural relationship between Eu3T2In9 and EuCu2Ge2 has been discussed in detail, and we conclude that Eu3T2In9 is the metal deficient variant of EuCu2Ge2. The magnetic susceptibilities of Eu3T2In9 (T = Cu and Ag) and EuCu2Ge2 were measured between 2 and 300 K. In all cases, magnetic susceptibility data followed Curie-Weiss law above 150 K. Magnetic moment values obtained from the measurements indicate the probable mixed/intermediate valent behavior of the europium atoms, which was further confirmed by X-ray absorption studies and bond distances around the Eu atoms. Electrical resistivity measurements suggest that Eu3T2In9 and EuCu2Ge2 are metallic in nature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA