Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38396713

RESUMO

Carcinoid heart disease (CHD) is a frequent and life-threatening complication in patients with carcinoid tumors. Its clinical management is challenging is some cases since serotonin-induced valve fibrosis leads to heart failure. Telotristat is an inhibitor of tryptophan-hydroxylase (TPH), a key enzyme in serotonin production. Telotristat use in patients with carcinoid syndrome and uncontrollable diarrhea under somatostatin analogs is approved, but its specific role in patients with CHD is still not clear. IN this context, we aimed to explore the effect of telotristat in heart fibrosis using a mouse model of serotonin-secreting metastasized neuroendocrine neoplasm (NEN). To this aim, four treatment groups (n = 10/group) were evaluated: control, monthly octreotide, telotristat alone, and telotristat combined with octreotide. Plasma serotonin and NT-proBNP levels were determined. Heart fibrosis was histologically evaluated after 6 weeks of treatment or when an individual mouse's condition was close to being terminal. Heart fibrosis was observed in all groups. Non-significant reductions in primary tumor growth were observed in all of the treated groups. Feces volume was increased in all groups. A non-significant decrease in feces volume was observed in the octreotide or telotristat-treated groups, while it was significantly reduced with the combined treatment at the end of the study compared with octreotide (52 g reduction; p < 0.01) and the control (44.5 g reduction; p = 0.05). Additionally, plasma NT-proBNP decreased in a non-significant, but clinically relevant, manner in the octreotide (28.2% reduction), telotristat (45.9% reduction), and the octreotide + telotristat (54.1% reduction) treatment groups. No significant changes were observed in plasma serotonin levels. A similar non-significant decrease in heart valve fibrosis was observed in the three treated groups. In conclusion, Telotristat alone and especially in combination with octreotide decreases NT-proBNP levels in a mouse model of serotonin-secreting metastasized NEN, when compared with the control and octreotide, but its effect on heart valve fibrosis (alone and in combination) was not superior to octreotide in monotherapy.


Assuntos
Doença Cardíaca Carcinoide , Tumores Neuroendócrinos , Fenilalanina/análogos & derivados , Pirimidinas , Humanos , Octreotida/farmacologia , Octreotida/uso terapêutico , Doença Cardíaca Carcinoide/tratamento farmacológico , Serotonina , Tumores Neuroendócrinos/tratamento farmacológico , Fibrose
2.
J Endocr Soc ; 8(3): bvae015, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38370444

RESUMO

Growth hormone (GH) modifies liver gene transcription in a sexually dimorphic manner to meet liver metabolic demands related to sex; thus, GH dysregulation leads to sex-biased hepatic disease. We dissected the steps of the GH regulatory cascade modifying GH-dependent genes involved in metabolism, focusing on the male-predominant genes Lcn13, Asns, and Cyp7b1, and the female-predominant genes Hao2, Pgc1a, Hamp2, Cyp2a4, and Cyp2b9. We explored mRNA expression in 2 settings: (i) intact liver GH receptor (GHR) but altered GH and insulin-like growth factor 1 (IGF1) levels (NeuroDrd2KO, HiGH, aHepIGF1kd, and STAT5bCA mouse lines); and (ii) liver loss of GHR, with or without STAT5b reconstitution (aHepGHRkd, and aHepGHRkd + STAT5bCA). Lcn13 was downregulated in males in most models, while Asns and Cyp7b1 were decreased in males by low GH levels or action, or constant GH levels, but unexpectedly upregulated in both sexes by the loss of liver Igf1 or constitutive Stat5b expression. Hao, Cyp2a4, and Cyp2b9 were generally decreased in female mice with low GH levels or action (NeuroDrd2KO and/or aHepGHRkd mice) and increased in HiGH females, while in contrast, Pgc1a was increased in female NeuroDrd2KO but decreased in STAT5bCA and aHepIGF1kd females. Bioinformatic analysis of RNAseq from aHepGHRkd livers stressed the greater impact of GHR loss on wide gene expression in males and highlighted that GH modifies almost completely different gene signatures in each sex. Concordantly, we show that altering different steps of the GH cascade in the liver modified liver expression of Lcn13, Asns, Cyp7b1, Hao2, Hamp2, Pgc1a, Cyp2a4, and Cyp2b9 in a sex- and gene-specific manner.

3.
Rev Endocr Metab Disord ; 24(6): 1165-1187, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819510

RESUMO

Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1ß/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.


Assuntos
Inflamassomos , Neoplasias da Próstata , Masculino , Humanos , Idoso , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Inflamação/metabolismo , Obesidade/metabolismo
4.
Metabolism ; 144: 155589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182789

RESUMO

BACKGROUND: Evidence is accumulating that growth hormone (GH) protects against the development of steatosis and progression of non-alcoholic fatty liver disease (NAFLD). GH may control steatosis indirectly by altering systemic insulin sensitivity and substrate delivery to the liver and/or by the direct actions of GH on hepatocyte function. APPROACH: To better define the hepatocyte-specific role of GH receptor (GHR) signaling on regulating steatosis, we used a mouse model with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd). To prevent the reduction in circulating insulin-like growth factor 1 (IGF1) and the subsequent increase in GH observed after aHepGHRkd, subsets of aHepGHRkd mice were treated with adeno-associated viral vectors (AAV) driving hepatocyte-specific expression of IGF1 or a constitutively active form of STAT5b (STAT5bCA). The impact of hepatocyte-specific modulation of GHR, IGF1 and STAT5b on carbohydrate and lipid metabolism was studied across multiple nutritional states and in the context of hyperinsulinemic:euglycemic clamps. RESULTS: Chow-fed male aHepGHRkd mice developed steatosis associated with an increase in hepatic glucokinase (GCK) and ketohexokinase (KHK) expression and de novo lipogenesis (DNL) rate, in the post-absorptive state and in response to refeeding after an overnight fast. The aHepGHRkd-associated increase in hepatic KHK, but not GCK and steatosis, was dependent on hepatocyte expression of carbohydrate response element binding protein (ChREBP), in re-fed mice. Interestingly, under clamp conditions, aHepGHRkd also increased the rate of DNL and expression of GCK and KHK, but impaired insulin-mediated suppression of hepatic glucose production, without altering plasma NEFA levels. These effects were normalized with AAV-mediated hepatocyte expression of IGF1 or STAT5bCA. Comparison of the impact of AAV-mediated hepatocyte IGF1 versus STAT5bCA in aHepGHRkd mice across multiple nutritional states, indicated the restorative actions of IGF1 are indirect, by improving systemic insulin sensitivity, independent of changes in the liver transcriptome. In contrast, the actions of STAT5b are due to the combined effects of raising IGF1 and direct alterations in the hepatocyte gene program that may involve suppression of BCL6 and FOXO1 activity. However, the direct and IGF1-dependent actions of STAT5b cannot fully account for enhanced GCK activity and lipogenic gene expression observed after aHepGHRkd, suggesting other GHR-mediated signals are involved. CONCLUSION: These studies demonstrate hepatocyte GHR-signaling controls hepatic glycolysis, DNL, steatosis and hepatic insulin sensitivity indirectly (via IGF1) and directly (via STAT5b). The relative contribution of these indirect and direct actions of GH on hepatocytes is modified by insulin and nutrient availability. These results improve our understanding of the physiologic actions of GH on regulating adult metabolism to protect against NAFLD progression.


Assuntos
Hormônio do Crescimento Humano , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Hormônio do Crescimento/metabolismo , Insulina/metabolismo , Glicólise , Glucose/metabolismo , Hormônio do Crescimento Humano/metabolismo
5.
Transl Res ; 253: 68-79, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36089245

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths among men. Consequently, the identification of novel molecular targets for treatment is urgently needed to improve patients' outcomes. Our group recently reported that some elements of the cellular machinery controlling alternative-splicing might be useful as potential novel therapeutic tools against advanced PCa. However, the presence and functional role of RBM22, a key spliceosome component, in PCa remains unknown. Therefore, RBM22 levels were firstly interrogated in 3 human cohorts and 2 preclinical mouse models (TRAMP/Pbsn-Myc). Results were validated in in silico using 2 additional cohorts. Then, functional effects in response to RBM22 overexpression (proliferation, migration, tumorspheres/colonies formation) were tested in PCa models in vitro (LNCaP, 22Rv1, and PC-3 cell-lines) and in vivo (xenograft). High throughput methods (ie, RNA-seq, nCounter PanCancer Pathways Panel) were performed in RBM22 overexpressing cells and xenograft tumors. We found that RBM22 levels were down-regulated (mRNA and protein) in PCa samples, and were inversely associated with key clinical aggressiveness features. Consistently, a gradual reduction of RBM22 from non-tumor to poorly differentiated PCa samples was observed in transgenic models (TRAMP/Pbsn-Myc). Notably, RBM22 overexpression decreased aggressiveness features in vitro, and in vivo. These actions were associated with the splicing dysregulation of numerous genes and to the downregulation of critical upstream regulators of cell-cycle (i.e., CDK1/CCND1/EPAS1). Altogether, our data demonstrate that RBM22 plays a critical pathophysiological role in PCa and invites to suggest that targeting negative regulators of RBM22 expression/activity could represent a novel therapeutic strategy to tackle this disease.


Assuntos
Processamento Alternativo , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Processamento Alternativo/genética , Neoplasias da Próstata/metabolismo , Splicing de RNA , Spliceossomos , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica
6.
Endocrinology ; 163(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35396838

RESUMO

STAT5 is an essential transcriptional regulator of the sex-biased actions of GH in the liver. Delivery of constitutively active STAT5 (STAT5CA) to male mouse liver using an engineered adeno-associated virus with high tropism for the liver is shown to induce widespread feminization of the liver, with extensive induction of female-biased genes and repression of male-biased genes, largely mimicking results obtained when male mice are given GH as a continuous infusion. Many of the STAT5CA-responding genes were associated with nearby (< 50 kb) sites of STAT5 binding to liver chromatin, supporting the proposed direct role of persistently active STAT5 in continuous GH-induced liver feminization. The feminizing effects of STAT5CA were dose-dependent; moreover, at higher levels, STAT5CA overexpression resulted in some histopathology, including hepatocyte hyperplasia, and increased karyomegaly and multinuclear hepatocytes. These findings establish that the persistent activation of STAT5 by GH that characterizes female liver is by itself sufficient to account for the sex-dependent expression of a majority of hepatic sex-biased genes. Moreover, histological changes seen when STAT5CA is overexpressed highlight the importance of carefully evaluating such effects before considering STAT5 derivatives for therapeutic use in treating liver disease.


Assuntos
Feminização , Fator de Transcrição STAT5 , Animais , Feminino , Expressão Gênica , Hormônio do Crescimento/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
7.
Mol Ther Nucleic Acids ; 27: 1164-1178, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35282415

RESUMO

Prostate-specific antigen (PSA) is the gold-standard marker to screen prostate cancer (PCa) nowadays. Unfortunately, its lack of specificity and sensitivity makes the identification of novel tools to diagnose PCa an urgent medical need. In this context, microRNAs (miRNAs) have emerged as potential sources of non-invasive diagnostic biomarkers in several pathologies. Therefore, this study was aimed at assessing for the first time the dysregulation of the whole plasma miRNome in PCa patients and its putative implication in PCa from a personalized perspective (i.e., obesity condition). Plasma miRNome from a discovery cohort (18 controls and 19 PCa patients) was determined using an Affymetrix-miRNA array, showing that the expression of 104 miRNAs was significantly altered, wherein six exhibited a significant receiver operating characteristic (ROC) curve to distinguish between control and PCa patients (area under the curve [AUC] = 1). Then, a systematic validation using an independent cohort (135 controls and 160 PCa patients) demonstrated that miR-107 was the most profoundly altered miRNA in PCa (AUC = 0.75). Moreover, miR-107 levels significantly outperformed the ability of PSA to distinguish between control and PCa patients and correlated with relevant clinical parameters (i.e., PSA). These differences were more pronounced when considering only obese patients (BMI > 30). Interestingly, miR-107 levels were reduced in PCa tissues versus non-tumor tissues (n = 84) and in PCa cell lines versus non-tumor cells. In vitro miR-107 overexpression altered key aggressiveness features in PCa cells (i.e., proliferation, migration, and tumorospheres formation) and modulated the expression of important genes involved in PCa pathophysiology (i.e., lipid metabolism [i.e., FASN] and splicing process). Altogether, miR-107 might represent a novel and useful personalized diagnostic and prognostic biomarker and a potential therapeutic tool in PCa, especially in obese patients.

8.
Curr Opin Pharmacol ; 60: 17-26, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311387

RESUMO

Metabolic syndrome is associated with chronic diseases, including type 2 diabetes, cardiovascular diseases, and cancer. This review summarizes the current evidence on the antitumor effects of some relevant drugs currently used to manage metabolic-related pathologies (i.e. insulin and its analogs, metformin, statins, etc.) in endocrine-related cancers including breast cancer, prostate cancer, pituitary cancer, ovarian cancer, and neuroendocrine neoplasms. Although current evidence does not provide a clear antitumor role of several of these drugs, metformin seems to be a promising chemopreventive and adjuvant agent in cancer management, modulating tumor cell metabolism and microenvironment, through both AMP-activated protein kinase-dependent and -independent mechanisms. Moreover, its combination with statins might represent a promising therapeutic strategy to tackle the progression of endocrine-related tumors. However, further studies are needed to endorse the clinical relevance of these drugs as adjuvants for cancer chemotherapy.


Assuntos
Neoplasias das Glândulas Endócrinas , Hipoglicemiantes , Metformina , Diabetes Mellitus Tipo 2 , Neoplasias das Glândulas Endócrinas/prevenção & controle , Neoplasias das Glândulas Endócrinas/terapia , Humanos , Hipoglicemiantes/uso terapêutico , Insulina , Metformina/uso terapêutico , Microambiente Tumoral
9.
J Clin Endocrinol Metab ; 106(12): e4956-e4968, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34255835

RESUMO

CONTEXT: Recent studies emphasize the importance of considering the metabolic status to develop personalized medicine approaches. This is especially relevant in prostate cancer (PCa), wherein the diagnostic capability of prostate-specific antigen (PSA) dramatically drops when considering patients with PSA levels ranging from 3 to 10 ng/mL, the so-called grey zone. Hence, additional noninvasive diagnostic and/or prognostic PCa biomarkers are urgently needed, especially in the metabolic-status context. OBJECTIVE: To assess the potential relation of urine In1-ghrelin (a ghrelin-splicing variant) levels with metabolic-related/pathological conditions (eg, obesity, diabetes, body mass index, insulin and glucose levels) and to define its potential clinical value in PCa (diagnostic/prognostic capacity) and relationship with PCa risk in patients with PSA in the grey zone. METHODS: Urine In1-ghrelin levels were measured by radioimmunoassay in a clinically, metabolically, pathologically well-characterized cohort of patients without (n = 397) and with (n = 213) PCa with PSA in the grey zone. RESULTS: Key obesity-related factors associated with PCa risk (BMI, diabetes, glucose and insulin levels) were strongly correlated to In1-ghrelin levels. Importantly, In1-ghrelin levels were higher in PCa patients compared to control patients with suspect of PCa but negative biopsy). Moreover, high In1-ghrelin levels were associated with increased PCa risk and linked to PCa aggressiveness (eg, tumor stage, lymphovascular invasion). In1-ghrelin levels added significant diagnostic value to a clinical model consisting of age, suspicious digital rectal exam, previous biopsy, and PSA levels. Furthermore, a multivariate model consisting of clinical and metabolic variables, including In1-ghrelin levels, showed high specificity and sensitivity to diagnose PCa (area under the receiver operating characteristic curve = 0.740). CONCLUSIONS: Urine In1-ghrelin levels are associated with obesity-related factors and PCa risk and aggressiveness and could represent a novel and valuable noninvasive PCa biomarker, as well as a potential link in the pathophysiological relationship between obesity and PCa.


Assuntos
Processamento Alternativo , Biomarcadores Tumorais/análise , Diabetes Mellitus Tipo 2/fisiopatologia , Grelina/genética , Obesidade/fisiopatologia , Neoplasias da Próstata/epidemiologia , Idoso , Glicemia/análise , Índice de Massa Corporal , Estudos de Casos e Controles , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Isoformas de Proteínas , Curva ROC , Estudos Retrospectivos , Espanha/epidemiologia
10.
Cell Mol Gastroenterol Hepatol ; 11(5): 1291-1311, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444819

RESUMO

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is commonly observed in patients with type 2 diabetes, and thiazolidinediones (TZD) are considered a potential therapy for NASH. Although TZD increase insulin sensitivity and partially reduce steatosis and alanine aminotransferase, the efficacy of TZD on resolving liver pathology is limited. In fact, TZD may activate peroxisome proliferator-activated receptor gamma (PPARγ) in hepatocytes and promote steatosis. Therefore, we assessed the role that hepatocyte-specific PPARγ plays in the development of NASH, and how it alters the therapeutic effects of TZD on the liver of mice with diet-induced NASH. METHODS: Hepatocyte-specific PPARγ expression was knocked out in adult mice before and after the development of NASH induced with a high fat, cholesterol, and fructose (HFCF) diet. RESULTS: HFCF diet increased PPARγ expression in hepatocytes, and rosiglitazone further activated PPARγ in hepatocytes of HFCF-fed mice in vivo and in vitro. Hepatocyte-specific loss of PPARγ reduced the progression of HFCF-induced NASH in male mice and increased the benefits derived from the effects of TZD on extrahepatic tissues and non-parenchymal cells. RNAseq and metabolomics indicated that HFCF diet promoted inflammation and fibrogenesis in a hepatocyte PPARγ-dependent manner and was associated with dysregulation of hepatic metabolism. Specifically, hepatocyte-specific loss of PPARγ plays a positive role in the regulation of methionine metabolism, and that could reduce the progression of NASH. CONCLUSIONS: Because of the negative effect of hepatocyte PPARγ in NASH, inhibition of mechanisms promoted by endogenous PPARγ in hepatocytes may represent a novel strategy that increases the efficiency of therapies for NAFLD.


Assuntos
Hepatócitos/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Inflamação/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PPAR gama/fisiologia , Rosiglitazona/farmacologia , Animais , Dieta Hiperlipídica , Feminino , Hepatócitos/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/antagonistas & inibidores
11.
J Endocrinol ; 248(1): 31-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112796

RESUMO

A reduction in hepatocyte growth hormone (GH)-signaling promotes non-alcoholic fatty liver disease (NAFLD). However, debate remains as to the relative contribution of the direct effects of GH on hepatocyte function vs indirect effects, via alterations in insulin-like growth factor 1 (IGF1). To isolate the role of hepatocyte GH receptor (GHR) signaling, independent of changes in IGF1, mice with adult-onset, hepatocyte-specific GHR knockdown (aHepGHRkd) were treated with a vector expressing rat IGF1 targeted specifically to hepatocytes. Compared to GHR-intact mice, aHepGHRkd reduced circulating IGF1 and elevated GH. In male aHepGHRkd, the shift in IGF1/GH did not alter plasma glucose or non-esterified fatty acids (NEFA), but was associated with increased insulin, enhanced systemic lipid oxidation and reduced white adipose tissue (WAT) mass. Livers of male aHepGHRkd exhibited steatosis associated with increased de novo lipogenesis, hepatocyte ballooning and inflammation. In female aHepGHRkd, hepatic GHR protein levels were not detectable, but moderate levels of IGF1 were maintained, with minimal alterations in systemic metabolism and no evidence of steatosis. Reconstitution of hepatocyte IGF1 in male aHepGHRkd lowered GH and normalized insulin, whole body lipid utilization and WAT mass. However, IGF1 reconstitution did not reduce steatosis or eliminate liver injury. RNAseq analysis showed IGF1 reconstitution did not impact aHepGHRkd-induced changes in liver gene expression, despite changes in systemic metabolism. These results demonstrate the impact of aHepGHRkd is sexually dimorphic and the steatosis and liver injury observed in male aHepGHRkd mice is autonomous of IGF1, suggesting GH acts directly on the adult hepatocyte to control NAFLD progression.


Assuntos
Fígado Gorduroso/etiologia , Hormônio do Crescimento/fisiologia , Hepatócitos/fisiologia , Fator de Crescimento Insulin-Like I/fisiologia , Fígado/metabolismo , Animais , Feminino , Metabolismo dos Lipídeos , Masculino , Camundongos , Receptores da Somatotropina/fisiologia , Caracteres Sexuais , Somatotrofos/metabolismo
12.
Endocrinology ; 159(11): 3761-3774, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30295789

RESUMO

Nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic steatohepatitis (NASH), is associated with reduced GH input/signaling, and GH therapy is effective in the reduction/resolution of NAFLD/NASH in selected patient populations. Our laboratory has focused on isolating the direct vs indirect effects of GH in preventing NAFLD/NASH. We reported that chow-fed, adult-onset, hepatocyte-specific, GH receptor knockdown (aHepGHRkd) mice rapidly (within 7 days) develop steatosis associated with increased hepatic de novo lipogenesis (DNL), independent of changes in systemic metabolic function. In this study, we report that 6 months after induction of aHepGHRkd early signs of NASH develop, which include hepatocyte ballooning, inflammation, signs of mild fibrosis, and elevated plasma alanine aminotransferase. These changes occur in the presence of enhanced systemic lipid utilization, without evidence of white adipose tissue lipolysis, indicating that the liver injury that develops after aHepGHRkd is due to hepatocyte-specific loss of GH signaling and not due to secondary defects in systemic metabolic function. Specifically, enhanced hepatic DNL is sustained with age in aHepGHRkd mice, associated with increased hepatic markers of lipid uptake/re-esterification. Because hepatic DNL is a hallmark of NAFLD/NASH, these studies suggest that enhancing hepatocyte GH signaling could represent an effective therapeutic target to reduce DNL and treat NASH.


Assuntos
Hormônio do Crescimento/metabolismo , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Receptores da Somatotropina/genética , Tecido Adiposo Branco/metabolismo , Alanina Transaminase/metabolismo , Animais , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Hepatócitos/patologia , Lipogênese , Lipólise , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores da Somatotropina/metabolismo
13.
J Mol Endocrinol ; 61(1): T187-T198, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29743295

RESUMO

It is clear that insulin-like growth factor-1 (IGF1) is important in supporting growth and regulating metabolism. The IGF1 found in the circulation is primarily produced by the liver hepatocytes, but healthy mature hepatocytes do not express appreciable levels of the IGF1 receptor (IGF1R). Therefore, the metabolic actions of IGF1 are thought to be mediated via extra-hepatocyte actions. Given the structural and functional homology between IGF1/IGF1R and insulin receptor (INSR) signaling, and the fact that IGF1, IGF1R and INSR are expressed in most tissues of the body, it is difficult to separate out the tissue-specific contributions of IGF1/IGF1R in maintaining whole body metabolic function. To circumvent this problem, over the last 20 years, investigators have taken advantage of the Cre/loxP system to manipulate IGF1/IGF1R in a tissue-dependent, and more recently, an age-dependent fashion. These studies have revealed that IGF1/IGF1R can alter extra-hepatocyte function to regulate hormonal inputs to the liver and/or alter tissue-specific carbohydrate and lipid metabolism to alter nutrient flux to liver, where these actions are not mutually exclusive, but serve to integrate the function of all tissues to support the metabolic needs of the organism.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Integrases/metabolismo , Receptores de Somatomedina/metabolismo , Animais , Humanos , Fígado/metabolismo , Receptor de Insulina/metabolismo
14.
Endocrinology ; 158(10): 3540-3552, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938461

RESUMO

Adipose tissue-derived adipokines (i.e., leptin/adiponectin/resistin) play important roles in the regulation of several pathophysiologic processes through the activation of specific receptors. However, although adipokines and their receptors are widely distributed in many tissues and exhibit a clear modulation according to particular metabolic conditions (e.g., obesity and/or fasting), their expression, regulation, and putative action on normal prostate glands (PGs; a hormone-dependent organ tightly regulated by the endocrine-metabolic milieu) are still to be defined. Different in vivo/in vitro models were used to comprehensively characterize the expression pattern and actions of different adipokine systems (i.e., leptin/adiponectin/resistin/receptors) in mouse PGs. Adiponectin, resistin, and adiponectin receptors (1 and 2) and leptin receptor are coexpressed at different levels in PG cells, wherein they are finely regulated under fasting and/or obesity conditions. Furthermore, treatment with different adipokines exerted both homologous and heterologous regulation of specific adipokines/receptor-synthesis and altered the expression of key proliferation and oncogenesis markers (i.e., Ki67/c-Myc/p53) in mouse PG cell cultures, wherein some of these actions might be elicited through extracellular signal-regulated kinase (ERK) activation. Moreover, treatment with leptin, adiponectin, and resistin differentially regulated key functional parameters [i.e., proliferation and migration capacity and/or prostate-specific antigen (PSA) secretion] in human normal and/or tumoral prostate cell lines. Altogether, our data show that various adipokine and receptor systems are differentially expressed in normal PG cells; that their expression is under a complex ligand- and receptor-selective regulation under extreme metabolic conditions; and that they mediate distinctive and common direct actions in normal and tumoral PG cells (i.e., homologous and heterologous regulation of ligand and receptor synthesis, ERK signaling activation, modulation of proliferation markers, proliferation and migration capacity, and PSA secretion), suggesting a relevant role of these systems in the regulation of PG pathophysiology.


Assuntos
Adipocinas/metabolismo , Jejum/metabolismo , Obesidade/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Receptores de Adiponectina/metabolismo , Receptores para Leptina/metabolismo , Adipocinas/farmacologia , Adiponectina/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Antígeno Ki-67/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Leptina/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Antígeno Prostático Específico/efeitos dos fármacos , Antígeno Prostático Específico/metabolismo , Proteínas Proto-Oncogênicas c-myc/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Resistina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
15.
Mol Cancer ; 16(1): 146, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851363

RESUMO

BACKGROUND: The Ghrelin-system is a complex, pleiotropic family composed of several peptides, including native-ghrelin and its In1-ghrelin splicing variant, and receptors (GHSR 1a/b), which are dysregulated in various endocrine-related tumors, where they associate to pathophysiological features, but the presence, functional role, and mechanisms of actions of In1-ghrelin splicing variant in prostate-cancer (PCa), is completely unexplored. Herein, we aimed to determine the presence of key ghrelin-system components (native-ghrelin, In1-ghrelin, GHSR1a/1b) and their potential pathophysiological role in prostate cancer (PCa). METHODS: In1-ghrelin and native-ghrelin expression was evaluated by qPCR in prostate tissues from patients with high PCa-risk (n = 52; fresh-tumoral biopsies), and healthy-prostates (n = 12; from cystoprostatectomies) and correlated with clinical parameters using Spearman-test. In addition, In1-ghrelin and native-ghrelin was measured in plasma from an additional cohort of PCa-patients with different risk levels (n = 30) and control-healthy patients (n = 20). In vivo functional (proliferation/migration) and mechanistic (gene expression/signaling-pathways) assays were performed in PCa-cell lines in response to In1-ghrelin and native-ghrelin treatment, overexpression and/or silencing. Finally, tumor progression was monitored in nude-mice injected with PCa-cells overexpressing In1-ghrelin, native-ghrelin and empty vector (control). RESULTS: In1-ghrelin, but not native-ghrelin, was overexpressed in high-risk PCa-samples compared to normal-prostate (NP), and this expression correlated with that of PSA. Conversely, GHSR1a/1b expression was virtually absent. Remarkably, plasmatic In1-ghrelin, but not native-ghrelin, levels were also higher in PCa-patients compared to healthy-controls. Furthermore, In1-ghrelin treatment/overexpression, and to a much lesser extent native-ghrelin, increased aggressiveness features (cell-proliferation, migration and PSA secretion) of NP and PCa cells. Consistently, nude-mice injected with PC-3-cells stably-transfected with In1-ghrelin, but not native-ghrelin, presented larger tumors. These effects were likely mediated by ERK1/2-signaling activation and involved altered expression of key oncogenes/tumor suppressor genes. Finally, In1-ghrelin silencing reduced cell-proliferation and PSA secretion from PCa cells. CONCLUSIONS: Altogether, our results indicate that In1-ghrelin levels (in tissue) and circulating levels (in plasma) are increased in PCa where it can regulate key pathophysiological processes, thus suggesting that In1-ghrelin may represent a novel biomarker and a new therapeutic target in PCa.


Assuntos
Biomarcadores Tumorais/metabolismo , Grelina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Idoso , Animais , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Proliferação de Células , Grelina/análise , Grelina/química , Grelina/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Próstata/química , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/química , Neoplasias da Próstata/epidemiologia , Isoformas de Proteínas
16.
Mol Cancer Res ; 15(7): 862-874, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28385910

RESUMO

Prostate-cancer is strongly influenced by obesity, wherein metformin could represent a promising treatment; however, the endocrine metabolic/cellular/molecular mechanisms underlying these associations and effects are still unclear. To determine the beneficial antitumoral effects of metformin on prostate cancer progression/aggressiveness and the relative contribution of high-fat diet (HFD; independently of obesity), we used HFD-fed immunosuppressed mice inoculated with PC3 cells (which exhibited partial resistance to diet-induced obesity) compared with low-fat diet (LFD)-fed control mice. Moreover, gene expression analysis was performed on cancer-associated genes in the xenografted tumors, and the antitumorigenic role of metformin on tumoral (PC3/22Rv1/LNCaP) and normal (RWPE1) prostate cells was evaluated. The results demonstrate that HFD is associated with enhanced prostate cancer growth irrespective of body weight gain and endocrine metabolic dysregulations and that metformin can reduce prostate cancer growth under LFD but more prominently under HFD, acting through the modulation of several tumoral-associated processes (e.g., cell cycle, apoptosis, and/or necrosis). Moreover, the actions observed in vivo could be mediated by the modulation of the local expression of GH/IGF1 axis components. Finally, it was demonstrated that metformin had disparate effects on proliferation, migration, and prostate-specific antigen secretion from different cell lines. Altogether, these data reveal that metformin inhibits prostate cancer growth under LFD and, specially, under HFD conditions through multiple metabolic/tumoral signaling pathways.Implications: The current study linking dietary influence on metformin-regulated signaling pathways and antitumoral response provides new and critical insight on environment-host interactions in cancer and therapy. Mol Cancer Res; 15(7); 862-74. ©2017 AACR.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Metformina/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Dieta com Restrição de Gorduras , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Obesidade , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
J Cell Mol Med ; 21(9): 1893-1904, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28244645

RESUMO

Obesity is a major health problem that courses with severe comorbidities and a drastic impairment of homeostasis and function of several organs, including the prostate gland (PG). The endocrine-metabolic regulatory axis comprising growth hormone (GH), insulin and IGF1, which is drastically altered under extreme metabolic conditions such as obesity, also plays relevant roles in the development, modulation and homeostasis of the PG. However, its implication in the pathophysiological interplay between obesity and prostate function is still to be elucidated. To explore this association, we used a high fat-diet obese mouse model, as well as in vitro primary cultures of normal-mouse PG cells and human prostate cancer cell lines. This approach revealed that most of the components of the GH/insulin/IGF1 regulatory axis are present in PGs, where their expression pattern is altered under obesity conditions and after an acute insulin treatment (e.g. Igfbp3), which might have some pathophysiological implications. Moreover, our results demonstrate, for the first time, that the PG becomes severely insulin resistant under diet-induced obesity in mice. Finally, use of in vitro approaches served to confirm and expand the conception that insulin and IGF1 play a direct, relevant role in the control of normal and pathological PG cell function. Altogether, these results uncover a fine, germane crosstalk between the endocrine-metabolic status and the development and homeostasis of the PG, wherein key components of the GH, insulin and IGF1 axes could play a relevant pathophysiological role.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Insulina/metabolismo , Obesidade/metabolismo , Próstata/metabolismo , Próstata/patologia , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica , Hormônio do Crescimento/metabolismo , Humanos , Insulina/administração & dosagem , Resistência à Insulina , Masculino , Camundongos Endogâmicos C57BL , Neoplasias da Próstata/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
18.
Sci Rep ; 7: 43537, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28349931

RESUMO

Adipose-tissue (AT) is an endocrine organ that dynamically secretes multiple hormones, the adipokines, which regulate key physiological processes. However, adipokines and their receptors are also expressed and regulated in other tissues, including the pituitary, suggesting that locally- and AT-produced adipokines might comprise a regulatory circuit that relevantly modulate pituitary cell-function. Here, we used primary pituitary cell-cultures from two normal nonhuman-primate species [Papio-anubis/Macaca-fascicularis] to determine the impact of different adipokines on the functioning of all anterior-pituitary cell-types. Leptin and resistin stimulated GH-release, a response that was blocked by somatostatin. Conversely, adiponectin decreased GH-release, and inhibited GHRH-, but not ghrelin-stimulated GH-secretion. Furthermore: 1) Leptin stimulated PRL/ACTH/FSH- but not LH/TSH-release; 2) adiponectin stimulated PRL-, inhibited ACTH- and did not alter LH/FSH/TSH-release; and 3) resistin increased ACTH-release and did not alter PRL/LH/FSH/TSH-secretion. These effects were mediated through the activation of common (AC/PKA) and distinct (PLC/PKC, intra-/extra-cellular calcium, PI3K/MAPK/mTOR) signaling-pathways, and by the gene-expression regulation of key receptors/transcriptional-factors involved in the functioning of these pituitary cell-types (e.g. GHRH/ghrelin/somatostatin/insulin/IGF-I-receptors/Pit-1). Finally, we found that primate pituitaries expressed leptin/adiponectin/resistin. Altogether, these and previous data suggest that local-production of adipokines/receptors, in conjunction with circulating adipokine-levels, might comprise a relevant regulatory circuit that contribute to the fine-regulation of pituitary functions.


Assuntos
Adiponectina/metabolismo , Adeno-Hipófise/citologia , Adeno-Hipófise/metabolismo , Hormônios Hipofisários/biossíntese , Adipocinas/metabolismo , Adipocinas/farmacologia , Adiponectina/farmacologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Leptina/metabolismo , Leptina/farmacologia , Papio , Adeno-Hipófise/efeitos dos fármacos , Primatas , Resistina/metabolismo , Resistina/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA