Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 633(8028): 90-95, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39169193

RESUMO

Although aromatic rings are common elements in pharmaceutically active compounds, the presence of these motifs brings several liabilities with respect to the developability of a drug1. Nonoptimal potency, metabolic stability, solubility and lipophilicity in pharmaceutical compounds can be improved by replacing aromatic rings with non-aromatic isosteric motifs2. Moreover, whereas aromatic rings are planar and lack three-dimensionality, the binding pockets of most pharmaceutical targets are chiral. Thus, the stereochemical configuration of the isosteric replacements may offer an added opportunity to improve the affinity of derived ligands for target receptors. A notable impediment to this approach is the lack of simple and scalable catalytic enantioselective syntheses of candidate isosteres from readily available precursors. Here we present a previously unknown palladium-catalysed reaction that converts hydrocarbon-derived precursors to chiral boron-containing nortricyclanes and we show that the shape of these nortricyclanes makes them plausible isosteres for meta disubstituted aromatic rings. With chiral catalysts, the Pd-catalysed reaction can be accomplished in an enantioselective fashion and subsequent transformation of the boron group provides access to a broad array of structures. We also show that the incorporation of nortricyclanes into pharmaceutical motifs can result in improved biophysical properties along with stereochemistry-dependent activity. We anticipate that these features, coupled with the simple, inexpensive synthesis of the functionalized nortricyclane scaffold, will render this platform a useful foundation for the assembly of new biologically active agents.

2.
Chembiochem ; 23(21): e202200374, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36068175

RESUMO

Caged morpholino oligonucleotides (cMOs) are synthetic tools that allow light-inducible gene silencing in live organisms. Previously reported cMOs have utilized hairpin, duplex, and cyclic structures, as well as caged nucleobases. While these antisense technologies enable efficient optical control of RNA splicing and translation, they can have limited dynamic range. A new caging strategy was developed where the two MO termini are conjugated to an internal position through a self-immolative trifunctional linker, thereby generating a bicyclic cMO that is conformationally resistant to RNA binding. The efficacy of this alternative cMO design has been demonstrated in zebrafish embryos and compared to linear MOs and monocyclic constructs.


Assuntos
Inativação Gênica , Peixe-Zebra , Animais , Morfolinos/química , Peixe-Zebra/genética
3.
Mol Pharm ; 16(11): 4677-4687, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31647241

RESUMO

In this work, we describe the synthesis, characterization, and ultimate in vivo assessment of second-generation insulin photoactivated depot (PAD) materials. These are the first to use visible light to stimulate insulin release and have an in vivo performance that is 28-fold improved relative to first-generation materials. This improvement is due to two major factors linked to the utilized chemistry: (1) we have incorporated the coumarin photocleavable group, which increases the photorelease wavelength into the visible range, enhancing tissue penetration of the light; (2) phototoggling of insulin solubility is produced by linking three insulin molecules to a central bridge via light cleaved groups, and not by bonding to a large polymer. The resulting trimer is, therefore, highly dense (87% insulin dry w/w) but retains the insolubility required of the approach. Only after irradiation with visible light is native, soluble insulin is released from the dermal depot. This high density increases the amount and ease of insulin release, as the density of photolytic groups is 10-20-fold higher than in polymer-based first-generation materials. We have synthesized new azide-terminated coumarin linkers that we react with the amine groups of insulin. Using mass spectrometry methods, we identify the sites of reaction and purify individual isomers, which we demonstrate have in vitro photolysis rates that are within a factor of 2 of each other. We then reacted these terminal azide groups with a tridentate strained alkyne linker. We show that the resulting insulin trimer is highly insoluble, but can be milled into injectable particles that release insulin only in response to light from a 406 nm light source. Finally, we demonstrate that these materials have a significantly improved in vivo performance, releasing 28-fold more insulin on a per energy basis than first-generation materials.


Assuntos
Insulina/química , Azidas/química , Cumarínicos/química , Luz , Fotólise , Polímeros/química , Solubilidade
4.
Mol Pharm ; 16(7): 2922-2928, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31117739

RESUMO

We have previously described the photoactivated depot (PAD) approach for the light-stimulated release of therapeutic proteins such as insulin. The aim of this method is to release insulin from a shallow dermal depot in response to blood glucose information, using transcutaneous irradiation. Our first approach utilized a photocleavable group that linked insulin to an insoluble but injectable polymer bead. The bead conferred insolubility, ensuring that the injected material stayed at the site of injection, until light cleaved the link, and allowed insulin to be absorbed systemically. While this proved to be effective, the use of a polymer to ensure insolubility introduces two major design problems: (1) low concentration of insulin, as a majority of the material is composed of polymer, and (2) upon release of the insulin, the polymer has to be cleared from the system. To address these two problems, in this work, we have pursued "hydrophobic tags", photocleavable small nonpolar molecules that confer insolubility to the modified insulin prior to irradiation without the bulk or need for biodegradation required of polymers. We developed a combined solid- and solution-phase synthetic approach that allowed us to incorporate a range of small nonpolar moieties, including peptides, into the final depot materials. The resulting materials are >90% w/w insulin and have sharply decreased solubilities relative to unmodified insulin (≤1000 × lower). We demonstrated that they can be milled into low micron-sized particles that can be readily injected through a 31G needle. These suspensions can be prepared at an effective concentration of 20 mM insulin, a concentration at which 120 µL contains 7 days of insulin for a typical adult. Finally, upon photolysis, the insoluble particles release soluble, native insulin in a predictable fashion. These combined properties make these new modified insulins nearly ideal as candidates for PAD materials.


Assuntos
Liberação Controlada de Fármacos/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas/efeitos da radiação , Insulina Regular Humana/química , Insulina Regular Humana/efeitos da radiação , Luminescência , Adulto , Humanos , Injeções , Cinética , Concentração Osmolar , Tamanho da Partícula , Fotólise/efeitos da radiação , Polímeros/administração & dosagem , Polímeros/química , Proteínas Recombinantes/química , Solubilidade , Suspensões/química
5.
Mol Pharm ; 13(11): 3835-3841, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27653828

RESUMO

In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.


Assuntos
Glicemia/efeitos dos fármacos , Insulina/química , Luz , Fotoquímica/métodos , Animais , Ensaio de Imunoadsorção Enzimática , Insulina/farmacologia , Masculino , Ratos , Ratos Sprague-Dawley
6.
Macromol Biosci ; 16(8): 1250, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27491330

RESUMO

Back Cover: The authors have created polymers which release insulin using light. These materials utilize insulin itself as the primary monomer and therefore achieve a very high density (85% w/w insulin). This near perfect density makes them ideal as photoactivated depots of insulin. Further details can be found in the article by Bhagyesh R. Sarode, Piyush K. Jain, Simon H. Friedman on page 1138.

7.
Macromol Biosci ; 16(8): 1138-46, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27171861

RESUMO

The use of light-sensitive polymers for the release of therapeutics is an important approach allowing the timing and amount of the release to be controlled precisely. The use of light has been pioneered to control insulin release from a dermal photoactivated depot, or PAD. One of the main impediments to the use of light-sensitive polymers in this context is the density of the materials: The large majority of the material is the carrier polymer, with the minority being the therapeutic. In this work, the feasibility of using insulin itself as a monomer in the polymerization process is demonstrated. Insulin modified with either one or two light cleavable azide groups is polymerized with a tridentate alkyne-bridging monomer using a click reaction. The resulting material called a "macropolymer" is ≈85% insulin, is insoluble in aqueous solvent, and releases native, soluble insulin upon irradiation.


Assuntos
Insulina/metabolismo , Luz , Polimerização , Polímeros/química , Dimetil Sulfóxido/química , Ensaio de Imunoadsorção Enzimática , Humanos , Cinética , Fotólise/efeitos da radiação , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA