Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 9(Pt 6): 778-791, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36381150

RESUMO

Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 ß-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.

2.
Acta Crystallogr D Struct Biol ; 77(Pt 2): 224-236, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33559611

RESUMO

The unique crystallization properties of the antenna protein C-phycocyanin (C-PC) from the thermophilic cyanobacterium Thermosynechococcus elongatus are reported and discussed. C-PC crystallizes in hundreds of significantly different conditions within a broad pH range and in the presence of a wide variety of precipitants and additives. Remarkably, the crystal dimensions vary from a few micrometres, as used in serial crystallography, to several hundred micrometres, with a very diverse crystal morphology. More than 100 unique single-crystal X-ray diffraction data sets were collected from randomly selected crystals and analysed. The addition of small-molecule additives revealed three new crystal packings of C-PC, which are discussed in detail. The high propensity of this protein to crystallize, combined with its natural blue colour and its fluorescence characteristics, make it an excellent candidate as a superior and highly adaptable model system in crystallography. C-PC can be used in technical and methods development approaches for X-ray and neutron diffraction techniques, and as a system for comprehending the fundamental principles of protein crystallography.


Assuntos
Proteínas de Bactérias/química , Ficocianina/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Thermosynechococcus/química
3.
J Neurochem ; 157(3): 802-815, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33421122

RESUMO

INTRODUCTION: Mammalian glutamate dehydrogenase (hGDH1 in human cells) interconverts glutamate to α-ketoglutarate and ammonia while reducing NAD(P) to NAD(P)H. During primate evolution, humans and great apes have acquired hGDH2, an isoenzyme that underwent rapid evolutionary adaptation concomitantly with brain expansion, thereby acquiring unique catalytic and regulatory properties that permitted its function under conditions inhibitory to its ancestor hGDH1. Although the 3D-structures of GDHs, including hGDH1, have been determined, attempts to determine the hGDH2 structure were until recently unsuccessful. Comparison of the hGDH1/hGDH2 structures would enable a detailed understanding of their evolutionary differences. This work aimed at the determination of the hGDH2 crystal structure and the analysis of its functional implications. Recombinant hGDH2 was produced in the Spodoptera frugiperda ovarian cell line Sf21, using the Baculovirus expression system. Purification was achieved via a two-step chromatography procedure. hGDH2 was crystallized, X-ray diffraction data were collected using synchrotron radiation and the structure was determined by molecular replacement. The hGDH2 structure is reported at a resolution of 2.9 Å. The enzyme adopts a novel semi-closed conformation, which is an intermediate between known open and closed GDH1 conformations, differing from both. The structure enabled us to dissect previously reported biochemical findings and to structurally interpret the effects of evolutionary amino acid substitutions, including Arg470His, on ADP affinity. In conclusion, our data provide insights into the structural basis of hGDH2 properties, the functional evolution of hGDH isoenzymes, and open new prospects for drug design, especially for cancer therapeutics.


Assuntos
Encéfalo/enzimologia , Encéfalo/fisiologia , Glutamato Desidrogenase/fisiologia , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Cristalização , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/química , Humanos , Modelos Moleculares , Estrutura Molecular , Mutação , Conformação Proteica , Proteínas Recombinantes , Spodoptera , Difração de Raios X
4.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 444-452, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880593

RESUMO

Native cytochrome c6 was purified from an extract of strain BP-1 of the thermophilic cyanobacterium Thermosynechococcus elongatus. The protein was crystallized, and with only slight modifications of the buffer and vapour-diffusion conditions two different space groups were observed, namely H3 and C2. Both crystal structures were solved; they contained three and six molecules per asymmetric unit and were refined to 1.7 and 2.25 Šresolution, respectively. To date, the structure of native cytochrome c6 from T. elongatus has only been reported as a monomer using NMR spectroscopy, i.e. without addressing putative oligomerization, and related structures have only previously been solved using X-ray crystallography after recombinant gene overexpression in Escherichia coli. The reported space groups of related cyanobacterial cytochrome c6 structures differ from those reported here. Interestingly, the protein-protein interfaces that were observed utilizing X-ray crystallography could also explain homo-oligomerization in solution; specifically, trimerization is indicated by infra-red dynamic light scattering and blue native gel electrophoresis in solution. Trimers were also detected by mass spectrometry. Furthermore, there is an indication of post-translational methylation in the crystal structure. Additionally, the possibility of modifying the crystal size and the redox activity in the context of photosynthesis is shaping the investigated cytochrome as a highly suitable model protein for advanced serial crystallography at highly brilliant X-ray free-electron laser sources.


Assuntos
Proteínas de Bactérias/química , Citocromos c6/química , Processamento de Proteína Pós-Traducional , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reatores Biológicos , Cristalografia por Raios X , Citocromos c6/genética , Citocromos c6/metabolismo , Expressão Gênica , Metilação , Modelos Moleculares , Fotossíntese/fisiologia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Thermosynechococcus/química , Thermosynechococcus/enzimologia , Thermosynechococcus/genética
5.
Nat Commun ; 11(1): 657, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005876

RESUMO

To advance microfluidic integration, we present the use of two-photon additive manufacturing to fold 2D channel layouts into compact free-form 3D fluidic circuits with nanometer precision. We demonstrate this technique by tailoring microfluidic nozzles and mixers for time-resolved structural biology at X-ray free-electron lasers (XFELs). We achieve submicron jets with speeds exceeding 160 m s-1, which allows for the use of megahertz XFEL repetition rates. By integrating an additional orifice, we implement a low consumption flow-focusing nozzle, which is validated by solving a hemoglobin structure. Also, aberration-free in operando X-ray microtomography is introduced to study efficient equivolumetric millisecond mixing in channels with 3D features integrated into the nozzle. Such devices can be printed in minutes by locally adjusting print resolution during fabrication. This technology has the potential to permit ultracompact devices and performance improvements through 3D flow optimization in all fields of microfluidic engineering.


Assuntos
Microfluídica/instrumentação , Impressão Tridimensional/instrumentação , Biologia Sintética/instrumentação , Heme/química , Hemoglobinas/química , Humanos , Lasers , Microfluídica/métodos , Biologia Sintética/métodos , Microtomografia por Raio-X
6.
Struct Dyn ; 6(6): 064702, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31832488

RESUMO

The new European X-ray Free-Electron Laser (European XFEL) is the first X-ray free-electron laser capable of delivering intense X-ray pulses with a megahertz interpulse spacing in a wavelength range suitable for atomic resolution structure determination. An outstanding but crucial question is whether the use of a pulse repetition rate nearly four orders of magnitude higher than previously possible results in unwanted structural changes due to either radiation damage or systematic effects on data quality. Here, separate structures from the first and subsequent pulses in the European XFEL pulse train were determined, showing that there is essentially no difference between structures determined from different pulses under currently available operating conditions at the European XFEL.

7.
IUCrJ ; 4(Pt 6): 769-777, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29123679

RESUMO

Unravelling the interaction of biological macromolecules with ligands and substrates at high spatial and temporal resolution remains a major challenge in structural biology. The development of serial crystallography methods at X-ray free-electron lasers and subsequently at synchrotron light sources allows new approaches to tackle this challenge. Here, a new polyimide tape drive designed for mix-and-diffuse serial crystallography experiments is reported. The structure of lysozyme bound by the competitive inhibitor chitotriose was determined using this device in combination with microfluidic mixers. The electron densities obtained from mixing times of 2 and 50 s show clear binding of chitotriose to the enzyme at a high level of detail. The success of this approach shows the potential for high-throughput drug screening and even structural enzymology on short timescales at bright synchrotron light sources.

8.
Science ; 357(6355): 1021-1025, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28751471

RESUMO

Reaction centers are pigment-protein complexes that drive photosynthesis by converting light into chemical energy. It is believed that they arose once from a homodimeric protein. The symmetry of a homodimer is broken in heterodimeric reaction-center structures, such as those reported previously. The 2.2-angstrom resolution x-ray structure of the homodimeric reaction center-photosystem from the phototroph Heliobacterium modesticaldum exhibits perfect C2 symmetry. The core polypeptide dimer and two small subunits coordinate 54 bacteriochlorophylls and 2 carotenoids that capture and transfer energy to the electron transfer chain at the center, which performs charge separation and consists of 6 (bacterio)chlorophylls and an iron-sulfur cluster; unlike other reaction centers, it lacks a bound quinone. This structure preserves characteristics of the ancestral reaction center, providing insight into the evolution of photosynthesis.


Assuntos
Proteínas de Bactérias/química , Clostridiales/enzimologia , Complexo de Proteínas do Centro de Reação Fotossintética/química , Proteínas de Bactérias/ultraestrutura , Bacterioclorofilas/química , Carotenoides/química , Cristalografia por Raios X , Fotossíntese , Complexo de Proteínas do Centro de Reação Fotossintética/ultraestrutura , Conformação Proteica , Multimerização Proteica
9.
Nature ; 530(7589): 202-6, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26863980

RESUMO

The three-dimensional structures of macromolecules and their complexes are mainly elucidated by X-ray protein crystallography. A major limitation of this method is access to high-quality crystals, which is necessary to ensure X-ray diffraction extends to sufficiently large scattering angles and hence yields information of sufficiently high resolution with which to solve the crystal structure. The observation that crystals with reduced unit-cell volumes and tighter macromolecular packing often produce higher-resolution Bragg peaks suggests that crystallographic resolution for some macromolecules may be limited not by their heterogeneity, but by a deviation of strict positional ordering of the crystalline lattice. Such displacements of molecules from the ideal lattice give rise to a continuous diffraction pattern that is equal to the incoherent sum of diffraction from rigid individual molecular complexes aligned along several discrete crystallographic orientations and that, consequently, contains more information than Bragg peaks alone. Although such continuous diffraction patterns have long been observed--and are of interest as a source of information about the dynamics of proteins--they have not been used for structure determination. Here we show for crystals of the integral membrane protein complex photosystem II that lattice disorder increases the information content and the resolution of the diffraction pattern well beyond the 4.5-ångström limit of measurable Bragg peaks, which allows us to phase the pattern directly. Using the molecular envelope conventionally determined at 4.5 ångströms as a constraint, we obtain a static image of the photosystem II dimer at a resolution of 3.5 ångströms. This result shows that continuous diffraction can be used to overcome what have long been supposed to be the resolution limits of macromolecular crystallography, using a method that exploits commonly encountered imperfect crystals and enables model-free phasing.


Assuntos
Cristalografia por Raios X/métodos , Complexo de Proteína do Fotossistema II/química , Cristalização , Modelos Moleculares
10.
Protein Expr Purif ; 114: 1-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25979464

RESUMO

Heliobacterium modesticaldum is an anaerobic photosynthetic bacterium that grows optimally at pH 6-7 and 52°C and is the only phototrophic member of the Firmicutes phylum family (gram-positive bacteria with low GC content). The ATP synthase of H. modesticaldum was isolated and characterized at the biochemical and biophysical levels. The isolated holoenzyme exhibited the subunit patterns of F-type ATP synthases containing a 5-subunit hydrophilic F1 subcomplex and a 3-subunit hydrophobic F0 subcomplex. ATP hydrolysis by the isolated HF1F0 ATP synthase was successfully detected after pretreatment with different detergents by an in-gel ATPase activity assay, which showed that the highest activity was detected in the presence of mild detergents such as LDAO; moreover, high catalytic activity in the gel was already detected after the initial incubation period of 0.5h. In contrast, HF1F0 showed extremely low ATPase activity in harsher detergents such as TODC. The isolated fully functional enzyme will form the basis for future structural studies.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Clostridiales/enzimologia , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/isolamento & purificação , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Eletroforese em Gel de Poliacrilamida , ATPases Translocadoras de Prótons/metabolismo
11.
Biochem Biophys Rep ; 4: 152-157, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124199

RESUMO

The gene coding for the aminoglycoside adenylyltransferase (aadA6) from a clinical isolate of Pseudomonas aeruginosa was cloned and expressed in Escherichia coli strain BL21(DE3)pLysS. The overexpressed enzyme (AadA6, 281 amino-acid residues) and a carboxy-terminal truncated variant molecule ([1-264]AadA6) were purified to near homogeneity and characterized. Light scattering experiments conducted under low ionic strength supported equilibrium between monomeric and homodimeric arrangements of the enzyme subunits. Circular Dichroism spectropolarimetry indicated a close structural relation to adenylate kinases. Both forms modified covalently the aminoglycosides streptomycin and spectinomycin. The enzyme required at least 5 mM MgCl2 for normal Michaelis-Menten kinetics. Streptomycin exhibited a strong substrate inhibition effect at 1 mM MgCl2. The truncated 17 residues at the C-terminus have little influence on protein folding, whereas they have a positive effect on the enzymic activity and stabilize dimers at high protein concentrations (>100 µM). Homology modelling and docking based on known crystal structures yielded models of the central ternary complex of monomeric AadA6 with ATP and streptomycin or spectinomycin.

12.
Photosynth Res ; 120(1-2): 221-35, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24318506

RESUMO

Heliobacteria contain a very simple photosynthetic apparatus, consisting of a homodimeric type I reaction center (RC) without a peripheral antenna system and using the unique pigment bacteriochlorophyll (BChl) g. They are thought to use a light-driven cyclic electron transport pathway to pump protons, and thereby phosphorylate ADP, although some of the details of this cycle are yet to be worked out. We previously reported that the fluorescence emission from the heliobacterial RC in vivo was increased by exposure to actinic light, although this variable fluorescence phenomenon exhibited very different characteristics to that in oxygenic phototrophs (Collins et al. 2010). Here, we describe the underlying mechanism behind the variable fluorescence in heliobacterial cells. We find that the ability to stably photobleach P800, the primary donor of the RC, using brief flashes is inversely correlated to the variable fluorescence. Using pump-probe spectroscopy in the nanosecond timescale, we found that illumination of cells with bright light for a few seconds put them in a state in which a significant fraction of the RCs underwent charge recombination from P800 (+)A0 (-) with a time constant of ~20 ns. The fraction of RCs in the rapidly back-reacting state correlated very well with the variable fluorescence, indicating that nearly all of the increase in fluorescence could be explained by charge recombination of P800 (+)A0 (-), some of which regenerated the singlet excited state. This hypothesis was tested directly by time-resolved fluorescence studies in the ps and ns timescales. The major decay component in whole cells had a 20-ps decay time, representing trapping by the RC. Treatment of cells with dithionite resulted in the appearance of a ~18-ns decay component, which accounted for ~0.6 % of the decay, but was almost undetectable in the untreated cells. We conclude that strong illumination of heliobacterial cells can result in saturation of the electron acceptor pool, leading to reduction of the acceptor side of the RC and the creation of a back-reacting RC state that gives rise to delayed fluorescence.


Assuntos
Proteínas de Bactérias/química , Fluorescência , Bactérias Gram-Positivas/metabolismo , Proteínas de Bactérias/metabolismo , Fotossíntese/fisiologia , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo
13.
Biochemistry ; 52(43): 7586-94, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24090184

RESUMO

In nature, protein subunits containing multiple iron-sulfur clusters often mediate the delivery of reducing equivalents from metabolic pathways to the active site of redox proteins. The de novo design of redox active proteins should include the engineering of a conduit for the delivery of electrons to and from the active site, in which multiple redox active centers are arranged in a controlled manner. Here, we describe a designed three-helix protein, DSD-bis[4Fe-4S], that coordinates two iron-sulfur clusters within its hydrophobic core. The design exploits the pseudo two-fold symmetry of the protein scaffold, DSD, which is a homodimeric three-helix bundle. Starting from the sequence of the parent peptide, we mutated eight leucine residues per dimer in the hydrophobic core to cysteine to provide the first coordination sphere for cubane-type iron-sulfur clusters. Incorporation of two clusters per dimer is readily achieved by in situ reconstitution and imparts increased stability to thermal denaturation compared to that of the apo form of the peptide as assessed by circular dichroism-monitored thermal denaturation. The presence of [4Fe-4S] clusters in intact proteins is confirmed by UV-vis spectroscopy, gel filtration, analytical ultracentrifugation, and electron paramagnetic resonance spectroscopy. Pulsed electron-electron double-resonance experiments have detected a magnetic dipole interaction between the two clusters ~0.7 MHz, which is consistent with the expected intercluster distance of 29-34 Å. Taken together, our data demonstrate the successful design of an artificial multi-iron-sulfur cluster protein with evidence of cluster-cluster interaction. The design principles implemented here can be extended to the design of multicluster molecular wires.


Assuntos
Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Apoproteínas/síntese química , Apoproteínas/química , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Dicroísmo Circular , Complexos de Coordenação , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Temperatura Alta/efeitos adversos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Ferro-Enxofre/síntese química , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Simulação de Acoplamento Molecular , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Thermotoga maritima/enzimologia , Triptofano-tRNA Ligase/química , Triptofano-tRNA Ligase/metabolismo
14.
Photosynth Res ; 111(3): 291-302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22383054

RESUMO

We have developed a purification protocol for photoactive reaction centers (HbRC) from Heliobacterium modesticaldum. HbRCs were purified from solubilized membranes in two sequential chromatographic steps, resulting in the isolation of a fraction containing a single polypeptide, which was identified as PshA by LC-MS/MS of tryptic peptides. All polypeptides reported earlier as unknown proteins (in Heinnickel et al., Biochemistry 45:6756-6764, 2006; Romberger et al., Photosynth Res 104:293-303, 2010) are now identified by mass spectrometry to be the membrane-bound cytochrome c (553) and four different ABC-type transporters. The purified PshA homodimer binds the following pigments: 20 bacteriochlorophyll (BChl) g, two BChl g', two 8(1)-OH-Chl a (F), and one 4,4'-diaponeurosporene. It lacks the PshB polypeptide binding the F(A) and F(B) [4Fe-4S] clusters. It is active in charge separation and exhibits a trapping time of 23 ps, as judged by time-resolved fluorescence studies. The charge recombination rate of the P(800) (+)F(X)(-) state is 10-15 ms, as seen before. The purified HbRC core was able to reduce cyanobacterial flavodoxin in the light, exhibiting a K (M) of 10 µM and a k (cat) of 9.5 s(-1) under near-saturating light. There are ~1.6 menaquinones per HbRC in the purified complex. Illumination of frozen HbRC in the presence of dithionite can cause creation of a radical at g = 2.0046, but this is not a semiquinone. Furthermore, we show that high-purity HbRCs are very stable in anoxic conditions and even remain active in the presence of oxygen under low light.


Assuntos
Bactérias Gram-Positivas/química , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Bacterioclorofilas/metabolismo , Proteínas de Transporte/metabolismo , Bactérias Gram-Positivas/metabolismo , Luz , Oxigênio , Fotossíntese
15.
Biophys J ; 100(1): 135-43, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21190665

RESUMO

Photosystem I-light harvesting complex I (PSI-LHCI) was isolated from the thermoacidophilic red alga Galdieria sulphuraria, and its structure, composition, and light-harvesting function were characterized by electron microscopy, mass spectrometry, and ultrafast optical spectroscopy. The results show that Galdieria PSI is a monomer with core features similar to those of PSI from green algae, but with significant differences in shape and size. A comparison with the crystal structure of higher plant (pea) PSI-LHCI indicates that Galdieria PSI binds seven to nine light-harvesting proteins. Results from ultrafast optical spectroscopy show that the functional coupling of the LHCI proteins to the PSI core is tighter than in other eukaryotic PSI-LHCI systems reported thus far. This tight coupling helps Galdieria perform efficient light harvesting under the low-light conditions present in its natural endolithic habitat.


Assuntos
Escuridão , Temperatura Alta , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Rodófitas/metabolismo , Ácidos , Sequência de Aminoácidos , Chlamydomonas reinhardtii , Cromatografia Líquida , Meio Ambiente , Cinética , Complexos de Proteínas Captadores de Luz/ultraestrutura , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Complexo de Proteína do Fotossistema I/ultraestrutura , Rodófitas/ultraestrutura , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA