Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(7): 804-812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38486025

RESUMO

The ACTA2 gene codes for alpha-smooth muscle actin, a critical component of the contractile apparatus of the vascular smooth muscle cells. Autosomal dominant variants in the ACTA2 gene have been associated to familial non-syndromic thoracic aortic aneurysm/dissection (TAAD). They are thought to act through a dominant-negative mechanism. These variants display incomplete penetrance and variable expressivity, complicating the validation of ACTA2 variants pathogenicity by family segregation studies. In this study, we developed a yeast based assay to test putative TAAD-associated ACTA2 variants. We identified five new heterozygous ACTA2 missense variants in TAAD patients through next generation sequencing. We decided to test their pathogenicity in Saccharomyces cerevisiae, since yeast actin is very similar to human alpha-smooth muscle actin, and the residues at which the TAAD-associated variants occur in ACTA2 are well conserved. A wild type yeast strain was transformed with a vector expressing the different mutant alleles, to model the heterozygous condition of patients. Then, we evaluated yeast growth by spot test and cytoskeletal and mitochondrial morphology by fluorescence microscopy. We found that mutant yeast strains displayed only mild growth defects but a significant increase in the percentage of cells with abnormal mitochondrial distribution and abnormal organization of the actin cytoskeleton compared to controls. All variants appeared to interfere with the activity of wild type actin in yeast, suggesting a dominant-negative pathogenic mechanism. Our results demonstrate the utility of using the yeast actin model system to validate the pathogenicity of TAAD-associated ACTA2 variants.


Assuntos
Actinas , Mutação de Sentido Incorreto , Saccharomyces cerevisiae , Humanos , Actinas/genética , Actinas/metabolismo , Saccharomyces cerevisiae/genética , Masculino , Feminino , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Pessoa de Meia-Idade , Heterozigoto , Idoso , Mitocôndrias/genética
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38139294

RESUMO

The Transactivating response (TAR) element DNA-binding of 43 kDa (TDP-43) is mainly implicated in the regulation of gene expression, playing multiple roles in RNA metabolism. Pathologically, it is implicated in amyotrophic lateral sclerosis and in a class of neurodegenerative diseases broadly going under the name of frontotemporal lobar degeneration (FTLD). A common hallmark of most forms of such diseases is the presence of TDP-43 insoluble inclusions in the cell cytosol. The molecular mechanisms of TDP-43-related cell toxicity are still unclear, and the contribution to cell damage from either loss of normal TDP-43 function or acquired toxic properties of protein aggregates is yet to be established. Here, we investigate the effects on cell viability of FTLD-related TDP-43 mutations in both yeast and mammalian cell models. Moreover, we focus on nucleolin (NCL) gene, recently identified as a genetic suppressor of TDP-43 toxicity, through a thorough structure/function characterization aimed at understanding the role of NCL domains in rescuing TDP-43-induced cytotoxicity. Using functional and biochemical assays, our data demonstrate that the N-terminus of NCL is necessary, but not sufficient, to exert its antagonizing effects on TDP-43, and further support the relevance of the DNA/RNA binding central region of the protein. Concurrently, data suggest the importance of the NCL nuclear localization for TDP-43 trafficking, possibly related to both TDP-43 physiology and toxicity.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Degeneração Lobar Frontotemporal , Nucleolina , Humanos , Esclerose Lateral Amiotrófica/metabolismo , DNA , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Nucleolina/metabolismo , RNA , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA