Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Intern Med ; 177(10): 1370-1380, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39250801

RESUMO

BACKGROUND: Imbalances between hospital caseload and care resources that strained U.S. hospitals during the pandemic have persisted after the pandemic amid ongoing staff shortages. Understanding which hospital types were more resilient to pandemic overcrowding-related excess deaths may prioritize patient safety during future crises. OBJECTIVE: To determine whether hospital type classified by capabilities and resources (that is, extracorporeal membrane oxygenation [ECMO] capability, multiplicity of intensive care unit [ICU] types, and large or small hospital) influenced COVID-19 volume-outcome relationships during Delta wave surges. DESIGN: Retrospective cohort study. SETTING: 620 U.S. hospitals in the PINC AI Healthcare Database. PARTICIPANTS: Adult inpatients with COVID-19 admitted July to November 2021. MEASUREMENTS: Hospital-months were ranked by previously validated surge index (severity-weighted COVID-19 inpatient caseload relative to hospital bed capacity) percentiles. Hierarchical models were used to evaluate the effect of log-transformed surge index on the marginally adjusted probability of in-hospital mortality or discharge to hospice. Effect modification was assessed for by 4 mutually exclusive hospital types. RESULTS: Among 620 hospitals recording 223 380 inpatients with COVID-19 during the Delta wave, there were 208 ECMO-capable, 216 multi-ICU, 36 large (≥200 beds) single-ICU, and 160 small (<200 beds) single-ICU hospitals. Overall, 50 752 (23%) patients required admission to the ICU, and 34 274 (15.3%) died. The marginally adjusted probability for mortality was 5.51% (95% CI, 4.53% to 6.50%) per unit increase in the log surge index (strain attributable mortality = 7375 [CI, 5936 to 8813] or 1 in 5 COVID-19 deaths). The test for interaction showed no difference (P = 0.32) in log surge index-mortality relationship across 4 hospital types. Results were consistent after excluding transferred patients, restricting to patients with acute respiratory failure and mechanical ventilation, and using alternative strain metrics. LIMITATION: Residual confounding. CONCLUSION: Comparably detrimental relationships between COVID-19 caseload and survival were seen across all hospital types, including highly advanced centers, and well beyond the pandemic's learning curve. These lessons from the pandemic heighten the need to minimize caseload surges and their effects across all hospital types during public health and staffing crises. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center.


Assuntos
COVID-19 , Mortalidade Hospitalar , Unidades de Terapia Intensiva , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/mortalidade , Estudos Retrospectivos , Masculino , Estados Unidos/epidemiologia , Feminino , Pessoa de Meia-Idade , Unidades de Terapia Intensiva/estatística & dados numéricos , Oxigenação por Membrana Extracorpórea/estatística & dados numéricos , Hospitais/estatística & dados numéricos , Pandemias , Idoso , Carga de Trabalho , Adulto , Número de Leitos em Hospital/estatística & dados numéricos
2.
JAMA Netw Open ; 7(2): e2356174, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38358739

RESUMO

Importance: Transferring patients to other hospitals because of inpatient saturation or need for higher levels of care was often challenging during the early waves of the COVID-19 pandemic. Understanding how transfer patterns evolved over time and amid hospital overcrowding could inform future care delivery and load balancing efforts. Objective: To evaluate trends in outgoing transfers at overall and caseload-strained hospitals during the COVID-19 pandemic vs prepandemic times. Design, Setting, and Participants: This retrospective cohort study used data for adult patients at continuously reporting US hospitals in the PINC-AI Healthcare Database. Data analysis was performed from February to July 2023. Exposures: Pandemic wave, defined as wave 1 (March 1, 2020, to May 31, 2020), wave 2 (June 1, 2020, to September 30, 2020), wave 3 (October 1, 2020, to June 19, 2021), Delta (June 20, 2021, to December 18, 2021), and Omicron (December 19, 2021, to February 28, 2022). Main Outcomes and Measures: Weekly trends in cumulative mean daily acute care transfers from all hospitals were assessed by COVID-19 status, hospital urbanicity, and census index (calculated as daily inpatient census divided by nominal bed capacity). At each hospital, the mean difference in transfer counts was calculated using pairwise comparisons of pandemic (vs prepandemic) weeks in the same census index decile and averaged across decile hospitals in each wave. For top decile (ie, high-surge) hospitals, fold changes (and 95% CI) in transfers were adjusted for hospital-level factors and seasonality. Results: At 681 hospitals (205 rural [30.1%] and 476 urban [69.9%]; 360 [52.9%] small with <200 beds and 321 [47.1%] large with ≥200 beds), the mean (SD) weekly outgoing transfers per hospital remained lower than the prepandemic mean of 12.1 (10.4) transfers per week for most of the pandemic, ranging from 8.5 (8.3) transfers per week during wave 1 to 11.9 (10.7) transfers per week during the Delta wave. Despite more COVID-19 transfers, overall transfers at study hospitals cumulatively decreased during each high national surge period. At 99 high-surge hospitals, compared with a prepandemic baseline, outgoing acute care transfers decreased in wave 1 (fold change -15.0%; 95% CI, -22.3% to -7.0%; P < .001), returned to baseline during wave 2 (2.2%; 95% CI, -4.3% to 9.2%; P = .52), and displayed a sustained increase in subsequent waves: 19.8% (95% CI, 14.3% to 25.4%; P < .001) in wave 3, 19.2% (95% CI, 13.4% to 25.4%; P < .001) in the Delta wave, and 15.4% (95% CI, 7.8% to 23.5%; P < .001) in the Omicron wave. Observed increases were predominantly limited to small urban hospitals, where transfers peaked (48.0%; 95% CI, 36.3% to 60.8%; P < .001) in wave 3, whereas large urban and small rural hospitals displayed little to no increases in transfers from baseline throughout the pandemic. Conclusions and Relevance: Throughout the COVID-19 pandemic, study hospitals reported paradoxical decreases in overall patient transfers during each high-surge period. Caseload-strained rural (vs urban) hospitals with fewer than 200 beds were unable to proportionally increase transfers. Prevailing vulnerabilities in flexing transfer capabilities for care or capacity reasons warrant urgent attention.


Assuntos
COVID-19 , Entorses e Distensões , Adulto , Humanos , COVID-19/epidemiologia , Pandemias , Transferência de Pacientes , Estudos Retrospectivos , Hospitais Urbanos
3.
JAC Antimicrob Resist ; 5(2): dlad049, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124072

RESUMO

Background: Clinical data informing antimicrobial susceptibility breakpoints for Stenotrophomonas maltophilia infections are lacking. We sought to leverage real-world data to identify MIC values within the currently defined susceptible range that could discriminate mortality risk for patients with S. maltophilia infections and guide future breakpoint revisions. Methods: Inpatients with S. maltophilia infection who received single-agent targeted therapy with levofloxacin or trimethoprim/sulfamethoxazole were identified in the Cerner HealthFacts electronic health record database. Encounters were restricted to those with MIC values reported to be in the susceptible range for both agents. Curation for exact (non-range) MIC values yielded sequentially granular model populations. Logistic regression was used to calculate adjusted OR (aOR) of mortality or hospice discharge associated with different susceptible-range MICs, controlling for patient- and centre-related factors, and infection site, polymicrobial infection and receipt of empirical therapy. Results: Seventy-three of 851 levofloxacin-treated patients had levofloxacin MIC of exactly 2 mg/L (current Clinical and Laboratory Standards Institute (CLSI) susceptibility breakpoint) and served as the reference category for levofloxacin breakpoint models. In breakpoint model I (n = 501), aOR of mortality associated with infection due to isolates with levofloxacin MIC of ≤1 versus 2 mg/L were similar [aOR = 1.79 (95% CI 0.88-3.62), P = 0.11]. In breakpoint model IIa (n = 358), aOR of mortality associated with MIC ≤0.5 versus 2 mg/L were also similar [aOR 0.1.36 (95% CI 0.65-2.83), P = 0.41]. However, breakpoint model IIb (n = 297) displayed higher aOR of mortality associated with an MIC of 1 versus 2 mg/L [aOR 2.36 (95% CI 1.14-4.88), P = 0.02]. Only 9/645 trimethoprim/sulfamethoxazole-treated patients had trimethoprim/sulfamethoxazole MIC of exactly 2/38 mg/L precluding informative models for this agent. Conclusions: In this retrospective study of real-world patients with S. maltophilia infection, risk-adjusted survival data do not appear to stratify patients clinically within current susceptible-range MIC breakpoint for levofloxacin (≤2 mg/L) by mortality.

4.
Open Forum Infect Dis ; 9(2): ofab644, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35097154

RESUMO

BACKGROUND: Trimethoprim-sulfamethoxazole (TMP-SMX) is considered first-line therapy for Stenotrophomonas maltophilia infections based on observational data from small studies. Levofloxacin has emerged as a popular alternative due to tolerability concerns related to TMP-SMX. Data comparing levofloxacin to TMP-SMX as targeted therapy are lacking. METHODS: Adult inpatient encounters January 2005 through December 2017 with growth of S maltophilia in blood and/or lower respiratory cultures were identified in the Cerner Healthfacts database. Patients included received targeted therapy with either levofloxacin or TMP-SMX. Overlap weighting was used followed by downstream weighted regression. The primary outcome was adjusted odds ratio (aOR) for in-hospital mortality or discharge to hospice. The secondary outcome was number of days from index S maltophilia culture to hospital discharge. RESULTS: Among 1581 patients with S maltophilia infections, levofloxacin (n = 823) displayed statistically similar mortality risk (aOR, 0.76 [95% confidence interval {CI}, .58-1.01]; P = .06) compared to TMP-SMX (n = 758). Levofloxacin (vs TMP-SMX) use was associated with a lower aOR of death in patients with lower respiratory tract infection (n = 1452) (aOR, 0.73 [95% CI, .54-.98]; P = .03) and if initiated empirically (n = 89) (aOR, 0.16 [95% CI, .03-.95]; P = .04). The levofloxacin cohort had fewer hospital days between index culture collection and discharge (weighted median [interquartile range], 7 [4-13] vs 9 [6-16] days; P < .0001). CONCLUSIONS: Based on observational evidence, levofloxacin is a reasonable alternative to TMP-SMX for the treatment of bloodstream and lower respiratory tract infections caused by S maltophilia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA