Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114131, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38656870

RESUMO

Atg8 paralogs, consisting of LC3A/B/C and GBRP/GBRPL1/GATE16, function in canonical autophagy; however, their function is controversial because of functional redundancy. In innate immunity, xenophagy and non-canonical single membranous autophagy called "conjugation of Atg8s to single membranes" (CASM) eliminate bacteria in various cells. Previously, we reported that intracellular Streptococcus pneumoniae can induce unique hierarchical autophagy comprised of CASM induction, shedding, and subsequent xenophagy. However, the molecular mechanisms underlying these processes and the biological significance of transient CASM induction remain unknown. Herein, we profile the relationship between Atg8s, autophagy receptors, poly-ubiquitin, and Atg4 paralogs during pneumococcal infection to understand the driving principles of hierarchical autophagy and find that GATE16 and GBRP sequentially play a pivotal role in CASM shedding and subsequent xenophagy induction, respectively, and LC3A and GBRPL1 are involved in CASM/xenophagy induction. Moreover, we reveal ingenious bacterial tactics to gain intracellular survival niches by manipulating CASM-xenophagy progression by generating intracellular pneumococci-derived H2O2.

2.
Genes Cells ; 29(1): 17-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984375

RESUMO

Irgb6 is a priming immune-related GTPase (IRG) that counteracts Toxoplasma gondii. It is known to be recruited to the low virulent type II T. gondii parasitophorous vacuole (PV), initiating cell-autonomous immunity. However, the molecular mechanism by which immunity-related GTPases become inactivated after the parasite infection remains obscure. Here, we found that Thr95 of Irgb6 is prominently phosphorylated in response to low virulent type II T. gondii infection. We observed that a phosphomimetic T95D mutation in Irgb6 impaired its localization to the PV and exhibited reduced GTPase activity in vitro. Structural analysis unveiled an atypical conformation of nucleotide-free Irgb6-T95D, resulting from a conformational change in the G-domain that allosterically modified the PV membrane-binding interface. In silico docking corroborated the disruption of the physiological membrane binding site. These findings provide novel insights into a T. gondii-induced allosteric inactivation mechanism of Irgb6.


Assuntos
Toxoplasma , Toxoplasma/metabolismo , Fosforilação , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Vacúolos/metabolismo
3.
Nat Commun ; 14(1): 8469, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123556

RESUMO

Effective early-stage markers for predicting which patients are at risk of developing SARS-CoV-2 infection have not been fully investigated. Here, we performed comprehensive serum metabolome analysis of a total of 83 patients from two cohorts to determine that the acceleration of amino acid catabolism within 5 days from disease onset correlated with future disease severity. Increased levels of de-aminated amino acid catabolites involved in the de novo nucleotide synthesis pathway were identified as early prognostic markers that correlated with the initial viral load. We further employed mice models of SARS-CoV2-MA10 and influenza infection to demonstrate that such de-amination of amino acids and de novo synthesis of nucleotides were associated with the abnormal proliferation of airway and vascular tissue cells in the lungs during the early stages of infection. Consequently, it can be concluded that lung parenchymal tissue remodeling in the early stages of respiratory viral infections induces systemic metabolic remodeling and that the associated key amino acid catabolites are valid predictors for excessive inflammatory response in later disease stages.


Assuntos
COVID-19 , Pneumonia , Humanos , Animais , Camundongos , SARS-CoV-2 , RNA Viral , Aminoácidos
4.
Cell Rep ; 42(7): 112813, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37440410

RESUMO

Regulatory T (Treg) cells expressing the transcription factor (TF) Foxp3 also express other TFs shared by T helper (Th) subsets under certain conditions. Here, to determine the roles of T-bet-expressing Treg cells, we generate a mouse strain, called VeDTR, in which T-bet/Foxp3 double-positive cells are engineered to be specifically labeled and depleted by a combination of Cre- and Flp-recombinase-dependent gene expression control. Characterization of T-bet+Foxp3+ cells using VeDTR mice reveals high resistance under oxidative stress, which is involved in accumulation of T-bet+Foxp3+ cells in tumor tissues. Moreover, short-term depletion of T-bet+Foxp3+ cells leads to anti-tumor immunity but not autoimmunity, whereas that of whole Treg cells does both. Although ablation of T-bet+Foxp3+ cells during Toxoplasma infection slightly enhances Th1 immune responses, it does not affect the course of the infection. Collectively, the intersectional genetic method reveals the specific roles of T-bet+Foxp3+ cells in suppressing tumor immunity.


Assuntos
Linfócitos T Reguladores , Células Th1 , Animais , Camundongos , Proteínas com Domínio T/metabolismo , Autoimunidade , Fatores de Transcrição Forkhead/metabolismo
5.
Eur J Immunol ; 53(11): e2350455, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37471504

RESUMO

Caspase activation results in pyroptosis, an inflammatory cell death that contributes to several inflammatory diseases by releasing inflammatory cytokines and cellular contents. Fusobacterium nucleatum is a periodontal pathogen frequently detected in human cancer and inflammatory bowel diseases. Studies have reported that F. nucleatum infection leads to NLRP3 activation and pyroptosis, but the precise activation process and disease association remain poorly understood. This study demonstrated that F. nucleatum infection exacerbates acute colitis in mice and activates pyroptosis through caspase-11-mediated gasdermin D cleavage in macrophages. Furthermore, F. nucleatum infection in colitis mice induces the enhancement of IL-1⍺ secretion from the colon, affecting weight loss and severe disease activities. Neutralization of IL-1⍺ protects F. nucleatum infected mice from severe colitis. Therefore, F. nucleatum infection facilitates inflammation in acute colitis with IL-1⍺ from colon tissue by activating noncanonical inflammasome through gasdermin D cleavage.


Assuntos
Colite , Inflamassomos , Humanos , Animais , Camundongos , Inflamassomos/metabolismo , Fusobacterium nucleatum/metabolismo , Gasderminas , Colite/induzido quimicamente , Caspases/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
6.
Cell Rep ; 42(6): 112592, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37269286

RESUMO

Secreted virulence factors of Toxoplasma to survive in immune-competent hosts have been extensively explored by classical genetics and in vivo CRISPR screen methods, whereas their requirements in immune-deficient hosts are incompletely understood. Those of non-secreted virulence factors are further enigmatic. Here we develop an in vivo CRISPR screen system to enrich not only secreted but also non-secreted virulence factors in virulent Toxoplasma-infected C57BL/6 mice. Notably, combined usage of immune-deficient Ifngr1-/- mice highlights genes encoding various non-secreted proteins as well as well-known effectors such as ROP5, ROP18, GRA12, and GRA45 as interferon-γ (IFN-γ)-dependent virulence genes. The screen results suggest a role of GRA72 for normal GRA17/GRA23 localization and the IFN-γ-dependent role of UFMylation-related genes. Collectively, our study demonstrates that host genetics can complement in vivo CRISPR screens to highlight genes encoding IFN-γ-dependent secreted and non-secreted virulence factors in Toxoplasma.


Assuntos
Toxoplasma , Fatores de Virulência , Animais , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Toxoplasma/metabolismo , Interferon gama/genética , Proteínas de Protozoários/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Camundongos Endogâmicos C57BL
7.
JCI Insight ; 8(4)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36649084

RESUMO

Obesity is a major risk factor for end-stage kidney disease. We previously found that lysosomal dysfunction and impaired autophagic flux contribute to lipotoxicity in obesity-related kidney disease, in both humans and experimental animal models. However, the regulatory factors involved in countering renal lipotoxicity are largely unknown. Here, we found that palmitic acid strongly promoted dephosphorylation and nuclear translocation of transcription factor EB (TFEB) by inhibiting the mechanistic target of rapamycin kinase complex 1 pathway in a Rag GTPase-dependent manner, though these effects gradually diminished after extended treatment. We then investigated the role of TFEB in the pathogenesis of obesity-related kidney disease. Proximal tubular epithelial cell-specific (PTEC-specific) Tfeb-deficient mice fed a high-fat diet (HFD) exhibited greater phospholipid accumulation in enlarged lysosomes, which manifested as multilamellar bodies (MLBs). Activated TFEB mediated lysosomal exocytosis of phospholipids, which helped reduce MLB accumulation in PTECs. Furthermore, HFD-fed, PTEC-specific Tfeb-deficient mice showed autophagic stagnation and exacerbated injury upon renal ischemia/reperfusion. Finally, higher body mass index was associated with increased vacuolation and decreased nuclear TFEB in the proximal tubules of patients with chronic kidney disease. These results indicate a critical role of TFEB-mediated lysosomal exocytosis in counteracting renal lipotoxicity.


Assuntos
Dieta Hiperlipídica , Exocitose , Lipídeos , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Exocitose/genética , Rim/metabolismo , Rim/patologia , Lipídeos/toxicidade , Lisossomos/metabolismo , Obesidade/metabolismo , Insuficiência Renal Crônica/metabolismo
8.
mBio ; 14(1): e0325622, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715543

RESUMO

Toxoplasma gondii secretes various virulence effector molecules into host cells to disrupt host interferon-γ (IFN-γ)-dependent immunity. Among these effectors, ROP18 directly phosphorylates and inactivates IFN-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), leading to the subversion of IFN-inducible GTPase-induced cell-autonomous immunity. The modes of action of ROP18 have been studied extensively; however, little is known about the molecular mechanisms by which ROP18 is produced in the parasite itself. Here, we report the role of T. gondii transcription factor IWS1 in ROP18 mRNA expression in the parasite. Compared with wild-type virulent type I T. gondii, IWS1-deficient parasites showed dramatically increased loading of IRGs and GBPs onto the parasitophorous vacuole membrane (PVM). Moreover, IWS1-deficient parasites displayed decreased virulence in wild-type mice but retained normal virulence in mice lacking the IFN-γ receptor. Furthermore, IWS1-deficient parasites showed severely decreased ROP18 mRNA expression; however, tagged IWS1 did not directly bind with genomic regions of the ROP18 locus. Ectopic expression of ROP18 in IWS1-deficient parasites restored the decreased loading of effectors onto the PVM and in vivo virulence in wild-type mice. Taken together, these data demonstrate that T. gondii IWS1 indirectly regulates ROP18 mRNA expression to determine fitness in IFN-γ-activated host cells and mice. IMPORTANCE The parasite Toxoplasma gondii has a counterdefense system against interferon-γ (IFN-γ)-dependent host immunity which relies on the secretion of parasite effector proteins. ROP18 is one of the effector, which is released into host cells to inactivate IFN-γ-dependent anti-Toxoplasma host proteins. The mechanism by which Toxoplasma ROP18 subverts host immunity has been extensively analyzed, but how Toxoplasma produces this virulence factor remains unclear. Here, we show that Toxoplasma transcription factor IWS1 is important for ROP18 mRNA expression in the parasite. Loss of IWS1 from virulent Toxoplasma leads to dramatically decreased ROP18 mRNA expression, resulting in profoundly decreased virulence due to greater activity of IFN-γ-dependent host immune responses. Thus, Toxoplasma prepares the critical virulence factor ROP18 via an IWS1-dependent system to negate IFN-γ-dependent antiparasitic immunity and thus survive in the host.


Assuntos
Toxoplasma , Animais , Camundongos , Proteínas de Transporte , GTP Fosfo-Hidrolases/metabolismo , Interferon gama , Proteínas de Protozoários/metabolismo , Fatores de Virulência/metabolismo
9.
Sci Rep ; 12(1): 20923, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463322

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to a global pandemic. New technologies have been utilized to develop several types of vaccines to prevent the spread of SARS-CoV-2 infection, including mRNA vaccines. Our group previously developed an effective DNA-based vaccine. However, emerging SARS-CoV-2 variants of concern (VOCs), such as the delta variant, have escaped mutations against vaccine-induced neutralizing antibodies. This suggests that modified vaccines accommodating VOCs need to be developed promptly. Here, we first modified the current DNA vaccine to enhance antigenicity. Compared with the parental DNA vaccine, the modified version (GP∆-DNA vaccine) induced rapid antibody production. Next, we updated the GP∆-DNA vaccine to spike glycoprotein of the delta variant (GP∆-delta DNA vaccine) and compared the efficacy of different injection routes, namely intramuscular injection using a needle and syringe and intradermal injection using a pyro-drive jet injector (PJI). We found that the levels of neutralizing antibodies induced by the intradermal PJI injection were higher than intramuscular injection. Furthermore, the PJI-injected GP∆-delta DNA vaccine effectively protected human angiotensin-converting enzyme 2 (hACE2) knock-in mice from delta-variant infection. These results indicate that the improved DNA vaccine was effective against emerging VOCs and was a potential DNA vaccine platform for future VOCs or global pandemics.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , SARS-CoV-2/genética , Imunidade Humoral , Vacinas de DNA/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes
11.
Immunol Med ; 45(4): 251-264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001011

RESUMO

There is an urgent need to stop the coronavirus disease 2019 (COVID-19) pandemic through the development of efficient and safe vaccination methods. Over the short term, plasmid DNA vaccines can be developed as they are molecularly stable, thus facilitating easy transport and storage. pVAX1-SARS-CoV2-co was designed for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) S protein. The antibodies produced led to immunoreactions against the S protein, an anti-receptor-binding-domain, and a neutralizing action of the pVAX1-SARS-CoV2-co, as previously confirmed. To promote the efficacy of the pVAX1-SARS-CoV2-co vaccine a pyro-drive jet injector (PJI) was used. An intradermally adjusted PJI demonstrated that the pVAX1-SARS-CoV2-co vaccine injection caused a high production of anti-S protein antibodies, triggered immunoreactions, and neutralized the actions against SARS-CoV-2. A high-dose pVAX1-SARS-CoV2-co intradermal injection using PJI did not cause any serious disorders in the rat model. A viral challenge confirmed that intradermally immunized mice were potently protected from COVID-19. A pVAX1-SARS-CoV2-co intradermal injection using PJI is a safe and promising vaccination method for overcoming the COVID-19 pandemic.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Camundongos , Humanos , Ratos , Animais , COVID-19/prevenção & controle , Pandemias/prevenção & controle , SARS-CoV-2 , RNA Viral , Roedores , Anticorpos Antivirais , Vacinação/métodos , Formação de Anticorpos , Plasmídeos
12.
Parasitol Int ; 89: 102593, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35500831

RESUMO

Toxoplasma gondii is an intracellular parasite that does not differentiate among hosts and is capable of infecting nearly all warm-blooded vertebrates. Although about 30% of the human population is thought to be infected with T. gondii, it is one of the most common opportunistic infections that does not cause serious symptoms when the immune system is functioning normally. In this review, we focus on anti-T. gondii infection by host innate immunity, acquired immunity, and type II interferon-mediated cell-autonomous immunity. T. gondii has three types of secretory structures, rhoptries, dense granules, and micronemes, among which molecules released from T. gondii via rhoptries and dense granules act to inhibit host responses to eliminate. T. gondii. The molecules released by T. gondii through rhoptries and dense granules not only act to suppress host immunity, but also to control gene expression in infected cells, thereby favouring the spread of infection. T. gondii has survived to this day, and may continue to evolve by skilfully applying its own factors to the infected host.


Assuntos
Parasitos , Toxoplasma , Imunidade Adaptativa , Animais , Humanos , Imunidade Inata , Interferon gama , Toxoplasma/genética
13.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34753804

RESUMO

The p47 immunity-related GTPase (IRG) Irgb6 plays a pioneering role in host defense against Toxoplasma gondii infection. Irgb6 is recruited to the parasitophorous vacuole membrane (PVM) formed by T. gondii and disrupts it. Despite the importance of this process, the molecular mechanisms accounting for PVM recognition by Irgb6 remain elusive because of lack of structural information on Irgb6. Here we report the crystal structures of mouse Irgb6 in the GTP-bound and nucleotide-free forms. Irgb6 exhibits a similar overall architecture to other IRGs in which GTP binding induces conformational changes in both the dimerization interface and the membrane-binding interface. The membrane-binding interface of Irgb6 assumes a unique conformation, composed of N- and C-terminal helical regions forming a phospholipid binding site. In silico docking of phospholipids further revealed membrane-binding residues that were validated through mutagenesis and cell-based assays. Collectively, these data demonstrate a novel structural basis for Irgb6 to recognize T. gondii PVM in a manner distinct from other IRGs.


Assuntos
Interações Hospedeiro-Parasita , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Toxoplasma , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade , Vacúolos
14.
J Infect Chemother ; 28(4): 486-491, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34930624

RESUMO

INTRODUCTION: The aims were to investigate the clinical characteristics of Toxoplasma gondii (T. gondii) immunoglobulin (Ig) M-positive mothers and to clarify the incidences of serum T. gondii IgM or blood T. gondii DNA positivity in newborns born to the mothers and the actual congenital T. gondii infection. METHODS: Mothers with T. gondii IgM positivity and newborns born to the mothers from 2013 to 2020 were prospectively investigated. Serum T. gondii IgG and IgM were measured by enzyme-linked immunosorbent assay. Blood T. gondii DNA was detected by semi-nested polymerase chain reaction. Congenital T. gondii infection was diagnosed based on clinical characteristic manifestations with serum T. gondii IgG positivity at any age or T. gondii IgG positivity after 12 months of age. RESULTS: Among 71 T. gondii IgM-positive mothers, including one with triplets, 41% had low T. gondii IgG avidity index and 73% received maternal therapy. Among 73 newborns who were examined for serum T. gondii IgG and IgM at birth, none had clinical manifestations, and one (1.4%) had T. gondii IgM positivity. Among 32 newborns who were examined for blood T. gondii DNA at birth, two (6.3%) were positive. All patients with serum T. gondii IgM or blood T. gondii DNA positivity showed T. gondii IgG negativity within 12 months of age. CONCLUSIONS: A few newborns born to T. gondii IgM-positive mothers were suspected of having congenital T. gondii infection based on serum T. gondii IgM or blood T. gondii DNA testing at birth. However, none developed congenital T. gondii infection.


Assuntos
Toxoplasma , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina M , Recém-Nascido , Mães , Gravidez , Estudos Prospectivos , Toxoplasma/genética
15.
Nat Aging ; 2(2): 115-124, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-37117754

RESUMO

Reports of post-acute COVID-19 syndrome, in which the inflammatory response persists even after SARS-CoV-2 has disappeared, are increasing1, but the underlying mechanisms of post-acute COVID-19 syndrome remain unknown. Here, we show that SARS-CoV-2-infected cells trigger senescence-like cell-cycle arrest2,3 in neighboring uninfected cells in a paracrine manner via virus-induced cytokine production. In cultured human cells or bronchial organoids, these SASR-CoV-2 infection-induced senescent cells express high levels of a series of inflammatory factors known as senescence-associated secretory phenotypes (SASPs)4 in a sustained manner, even after SARS-CoV-2 is no longer detectable. We also show that the expression of the senescence marker CDKN2A (refs. 5,6) and various SASP factor4 genes is increased in the pulmonary cells of patients with severe post-acute COVID-19 syndrome. Furthermore, we find that mice exposed to a mouse-adapted strain of SARS-CoV-2 exhibit prolonged signs of cellular senescence and SASP in the lung at 14 days after infection when the virus was undetectable, which could be substantially reduced by the administration of senolytic drugs7. The sustained infection-induced paracrine senescence described here may be involved in the long-term inflammation caused by SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Camundongos , Animais , SARS-CoV-2 , Senescência Celular/genética , Pulmão , Inflamação
16.
Cell ; 184(13): 3452-3466.e18, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34139176

RESUMO

Antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein prevent SARS-CoV-2 infection. However, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from coronavirus disease 2019 (COVID-19) patients and found that some of antibodies against the N-terminal domain (NTD) induced the open conformation of RBD and thus enhanced the binding capacity of the spike protein to ACE2 and infectivity of SARS-CoV-2. Mutational analysis revealed that all of the infectivity-enhancing antibodies recognized a specific site on the NTD. Structural analysis demonstrated that all infectivity-enhancing antibodies bound to NTD in a similar manner. The antibodies against this infectivity-enhancing site were detected at high levels in severe patients. Moreover, we identified antibodies against the infectivity-enhancing site in uninfected donors, albeit at a lower frequency. These findings demonstrate that not only neutralizing antibodies but also enhancing antibodies are produced during SARS-CoV-2 infection.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , COVID-19/imunologia , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação Proteica/imunologia , Domínios Proteicos/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Células Vero
17.
Life Sci Alliance ; 4(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34078740

RESUMO

Interferon-inducible GTPases, such as immunity-related GTPases (IRGs) and guanylate-binding proteins (GBPs), are essential for cell-autonomous immunity against a wide variety of intracellular pathogens including Toxoplasma IRGs comprise regulatory and effector subfamily proteins. Regulatory IRGs Irgm1 and Irgm3 play important roles in anti-Toxoplasma immunity by globally controlling effector IRGs and GBPs. There is a remaining regulatory IRG, called Irgm2, which highly accumulates on parasitophorous vacuole membranes (PVMs). Very little is known about the mechanism of the unique localization on Toxoplasma PVMs. Here, we show that Irgm2 is important to control parasite killing through recruitment of Gbp1 and Irgb6, which does not require Irgm2 localization at Toxoplasma PVMs. Ubiquitination of Irgm2 in the cytosol, but not at the PVM, is also important for parasite killing through recruitment of Gbp1 to the PVM. Conversely, PVM ubiquitination and p62/Sqstm1 loading at later time points post-Toxoplasma infection require Irgm2 localization at the PVM. Irgm2-deficient mice are highly susceptible to Toxoplasma infection. Taken together, these data indicate that Irgm2 selectively controls accumulation of anti-Toxoplasma effectors to the vacuole in a manner dependent or independent on Irgm2 localization at the Toxoplasma PVM, which mediates parasite killing.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Imunidade Celular/imunologia , Toxoplasma/metabolismo , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/imunologia , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Monoméricas de Ligação ao GTP , Toxoplasma/patogenicidade , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Vacúolos
18.
J Exp Med ; 218(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970189

RESUMO

Because of their common signaling molecules, the main T cell receptor (TCR) signaling cascades in CD4+ and CD8+ T cells are considered qualitatively identical. Herein, we show that TCR signaling in CD8+ T cells is qualitatively different from that in CD4+ T cells, since CD8α ignites another cardinal signaling cascade involving phospholipase C ß4 (PLCß4). TCR-mediated responses were severely impaired in PLCß4-deficient CD8+ T cells, whereas those in CD4+ T cells were intact. PLCß4-deficient CD8+ T cells showed perturbed activation of peripheral TCR signaling pathways downstream of IP3 generation. Binding of PLCß4 to the cytoplasmic tail of CD8α was important for CD8+ T cell activation. Furthermore, GNAQ interacted with PLCß4, mediated double phosphorylation on threonine 886 and serine 890 positions of PLCß4, and activated CD8+ T cells in a PLCß4-dependent fashion. PLCß4-deficient mice exhibited defective antiparasitic host defense and antitumor immune responses. Altogether, PLCß4 differentiates TCR signaling in CD4+ and CD8+ T cells and selectively promotes CD8+ T cell-dependent adaptive immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Fosfolipase C beta/imunologia , Transdução de Sinais/imunologia , Animais , Linhagem Celular , Citoplasma/imunologia , Células HEK293 , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/imunologia , Receptores de Antígenos de Linfócitos T/imunologia
19.
Parasitol Int ; 83: 102335, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33771680

RESUMO

Sporozoites of the etiological agent of malaria, Plasmodium, form parasitophorous vacuoles (PVs) in hepatocytes. The PV membranes (PVM) are coated with a well-known host autophagy marker LC3 and parasite-derived protein called Upregulated in infective sporozoites 3 (UIS3), which has been shown to interact with LC3 and inhibit LC3-mediated autophagic disruption at the PV. Although uis3(-) sporozoites cannot proliferate in wild-type cells, they can replicate efficiently in cells defective in autophagy due to the lack of Atg proteins such as Atg3, Atg5 and Atg7, since these Atg proteins are essential for processing of LC3. However, it remains to be seen whether other Atg proteins participate in the restriction of uis3(-) parasite growth. Here we show that, despite essential roles of Atg9 and Atg14 in autophagy, both proteins are dispensable for the restriction of uis3(-) parasite growth. Moreover, we found that cells lacking LC3 proteins are also able to restrict uis3(-) parasite growth. In sharp contrast, GABARAPs, another subfamily of mammalian Atg8, participated in suppression of uis3(-) parasite growth. Taken together, contrary to a previous model in which UIS3 avoids host LC3- and autophagy-dependent parasite elimination program, our data demonstrate a role of GABARAPs for suppression of uis3(-) parasite growth in a manner independent on autophagy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Autofagia , Malária/parasitologia , Proteínas Associadas aos Microtúbulos/genética , Plasmodium berghei/fisiologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Interações Hospedeiro-Parasita , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo
20.
Autophagy ; 17(10): 2856-2875, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172329

RESUMO

The orphan nuclear receptor ESRRA (estrogen related receptor alpha) is critical in mitochondrial biogenesis and macroautophagy/autophagy function; however, the roles of ESRRA in intestinal function remain uncharacterized. Herein we identified that ESRRA acts as a key regulator of intestinal homeostasis by amelioration of colonic inflammation through activation of autophagic flux and control of host gut microbiota. Esrra-deficient mice presented with increased susceptibility to dextran sodium sulfate (DSS)-induced colitis with upregulation of intestinal inflammation. In addition, esrra-null mice had depressed AMP-activated protein kinase phosphorylation (AMPK), lower levels of TFEB (transcription factor EB), and accumulation of SQSTM1/p62 (sequestosome 1) with defective mitochondria in intestinal tissues. Esrra-deficient mice showed distinct gut microbiota composition and significantly higher microbial diversity than wild-type (WT) mice. Cohousing or fecal microbiota transplantation from WT mice to Esrra-deficient mice ameliorated DSS-induced colitis severity. Importantly, patients with ulcerative colitis (UC) had significantly decreased ESRRA expression in intestinal mucosal tissues that correlated with disease activity, suggesting clinical relevance of ESRRA in UC. Taken together, our results show that ESRRA contributes to intestinal homeostasis through autophagy activation and gut microbiota control to protect the host from detrimental inflammation and dysfunctional mitochondria.Abbreviations: ABX, antibotics; AMPK, AMP-activated protein kinase; ATP5A1, ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BECN1, beclin1, autophagy related, CCL, C-C motif chemokine ligand; CD, Crohn disease; CLDN, claudin; COX4I1, cytochrome c oxidase subunit 4I1; cKO, conditional knockout; cWT, conditional wild-type; CXCL, C-X-C motif chemokine ligand; DAI, disease activity index; DSS, dextran sodium sulfate; EGFP, enhanced green fluorescent protein; ESRR, estrogen related receptor; ESRRA, estrogen related receptor alpha; Esrra+/+, Esrra wild type; esrra-/-, esrra homozygous knockout; FMT, fecal microbiota transplantation; GABARAP, gamma-aminobutyric acid receptor associated protein; GSEA, gene set enrichment analysis; IBD, inflammatory bowel disease; IL, interleukin; KO, knockout; LAMP1, lysosomal-associated membrane protein 1; LCN2, lipocalin 2; LEfSe, linear discriminant analysis (LDA) effect size; LPS, lipopolysachharide; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; NDUFAB1, NADH: ubiquinone oxidoreductase subunit AB1; OCLN, occludin; OUT, operational taxonomic unit; OXPHOS, oxidative phosphorylation; PCoA, principal coordinate analysis; PPARGC1A, PPARG coactiva- tor 1 alpha; PRKAA, 5'-AMP-activated protein kinase catalytic subunit alpha; PTGS2/COX2, prostaglandin-endoperoxide synthase 2; RAB7, member RAS oncogene family; SDHB, succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1/p62, sequestosome 1; S100A9, S100 calcium binding protein A9 (calgranulin B); TCA, tricarboxylic acid; TFEB, transcription factor EB; TNF, tumor necrosis factor; UC, ulcerative colitis; UCP2, uncoupling protein 2 (mitochondrial, proton carrier); UQCRC1, ubiquinol-cytochrome c reductase core protein 1; UVRAG, UV radiation resistance associated gene; Vil1, villin; VPS11, VPS11, CORVET/HOPS core sub-unit; WT, wild type.


Assuntos
Autofagia , Microbioma Gastrointestinal , Animais , Autofagia/fisiologia , Sulfato de Dextrana/metabolismo , Sulfato de Dextrana/farmacologia , Estrogênios/metabolismo , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA