Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18196, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875516

RESUMO

The common marmoset (Callithrix jacchus) has attracted attention as a valuable primate model for the analysis of human diseases. Despite the potential for primate genetic modification, however, its widespread lab usage has been limited due to the requirement for a large number of eggs. To make up for traditional oocyte retrieval methods such as hormone administration and surgical techniques, we carried out an alternative approach by utilizing ovarian tissue from deceased marmosets that had been disposed of. This ovarian tissue contains oocytes and can be used as a valuable source of follicles and oocytes. In this approach, the ovarian tissue sections were transplanted under the renal capsules of immunodeficient mice first. Subsequent steps consist of development of follicles by hormone administrations, induction of oocyte maturation and fertilization, and culture of the embryo. This method was first established with rat ovaries, then applied to marmoset ovaries, ultimately resulting in the successful acquisition of the late-stage marmoset embryos. This approach has the potential to contribute to advancements in genetic modification research and disease modeling through the use of primate models, promoting biotechnology with non-human primates and the 3Rs principle in animal experimentation.


Assuntos
Callithrix , Ovário , Feminino , Animais , Camundongos , Fertilização in vitro , Oócitos , Callitrichinae , Hormônios
2.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-37047614

RESUMO

We previously demonstrated that fatty acid-binding protein 3 null (FABP3-/-) mice exhibit resistance to nicotine-induced conditioned place preference (CPP). Here, we confirm that the FABP3 inhibitor, MF1 ((4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid), successfully reduces nicotine-induced CPP scores in mice. MF1 (0.3 or 1.0 mg/kg) was orally administered 30 min before nicotine, and CPP scores were assessed in the conditioning, withdrawal, and relapse phases. MF1 treatment decreased CPP scores in a dose-dependent manner. Failure of CPP induction by MF1 (1.0 mg/kg, p.o.) was associated with the inhibition of both CaMKII and ERK activation in the nucleus accumbens (NAc) and hippocampal CA1 regions. MF1 treatment reduced nicotine-induced increases in phosphorylated CaMKII and cAMP-response element-binding protein (CREB)-positive cells. Importantly, the increase in dopamine D2 receptor (D2R) levels following chronic nicotine exposure was inhibited by MF1 treatment. Moreover, the quinpirole (QNP)-induced increase in the level of CaMKII and ERK phosphorylation was significantly inhibited by MF1 treatment of cultured NAc slices from wild type (WT) mice; however, QNP treatment had no effect on CaMKII and ERK phosphorylation levels in the NAc of D2R null mice. Taken together, these results show that MF1 treatment suppressed D2R/FABP3 signaling, thereby preventing nicotine-induced CPP induction. Hence, MF1 can be used as a novel drug to block addiction to nicotine and other drugs by inhibiting the dopaminergic system.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Nicotina , Camundongos , Animais , Nicotina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Núcleo Accumbens/metabolismo , Transdução de Sinais , Camundongos Knockout , Proteína 3 Ligante de Ácido Graxo/metabolismo
3.
Cell Rep ; 42(5): 112398, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37083330

RESUMO

Spatiotemporal control of gene expression is important for neural development and function. Here, we show that heterogeneous nuclear ribonucleoprotein (hnRNP) A/B is highly expressed in developing olfactory sensory neurons (OSNs), and its knockout results in reduction in mature OSNs and aberrant targeting of OSN axons to the olfactory bulb. RNA immunoprecipitation analysis reveals that hnRNP A/B binds to a group of mRNAs that are highly related to axon projections and synapse assembly. Approximately 11% of the identified hnRNP A/B targets, including Pcdha and Ncam2, encode cell adhesion molecules. In Hnrnpab knockout mice, PCDHA and NCAM2 levels are significantly reduced at the axon terminals of OSNs. Furthermore, deletion of the hnRNP A/B-recognition motif in the 3' UTR of Pcdha leads to impaired PCDHA expression at the OSN axon terminals. Therefore, we propose that hnRNP A/B facilitates OSN maturation and axon projection by regulating the local expression of its target genes at axon terminals.


Assuntos
Neurônios Receptores Olfatórios , Animais , Camundongos , Axônios/metabolismo , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurogênese/genética , Bulbo Olfatório , Neurônios Receptores Olfatórios/metabolismo , Terminações Pré-Sinápticas/metabolismo
4.
Neurochem Int ; 165: 105517, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36913980

RESUMO

NMDA-type glutamate receptors (NMDARs) are tetrameric channel complex composed of two subunits of GluN1, which is encoded by a single gene and diversified by alternative splicing, and two subunits from four subtypes of GluN2, leading to various combinations of subunits and channel specificities. However, there is no comprehensive quantitative analysis of GluN subunit proteins for relative comparison, and their compositional ratios at various regions and developmental stages have not been clarified. Here we prepared six chimeric subunits, by fusing an N-terminal side of the GluA1 subunit with a C-terminal side of each of two splicing isoforms of GluN1 subunit and four GluN2 subunits, with which titers of respective NMDAR subunit antibodies could be standardized using common GluA1 antibody, thus enabling quantification of relative protein levels of each NMDAR subunit by western blotting. We determined relative protein amounts of NMDAR subunits in crude, membrane (P2) and microsomal fractions prepared from the cerebral cortex, hippocampus and cerebellum in adult mice. We also examined amount changes in the three brain regions during developmental stages. Their relative amounts in the cortical crude fraction were almost parallel to those of mRNA expression, except for some subunits. Interestingly, a considerable amount of GluN2D protein existed in adult brains, although its transcription level declines after early postnatal stages. GluN1 was larger in quantity than GluN2 in the crude fraction, whereas GluN2 increased in the membrane component-enriched P2 fraction, except in the cerebellum. These data will provide the basic spatio-temporal information on the amount and composition of NMDARs.


Assuntos
Receptores de N-Metil-D-Aspartato , Transdução de Sinais , Animais , Camundongos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Cerebelo/metabolismo , Encéfalo/metabolismo , Ácido Glutâmico/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
5.
Elife ; 122023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695811

RESUMO

Extensive serotonin (5-hydroxytryptamine, 5-HT) innervation throughout the brain corroborates 5-HT's modulatory role in numerous cognitive activities. Volume transmission is the major mode for 5-HT transmission but mechanisms underlying 5-HT signaling are still largely unknown. Abnormal brain 5-HT levels and function have been implicated in autism spectrum disorder (ASD). Neurexin (Nrxn) genes encode presynaptic cell adhesion molecules important for the regulation of synaptic neurotransmitter release, notably glutamatergic and GABAergic transmission. Mutations in Nrxn genes are associated with neurodevelopmental disorders including ASD. However, the role of Nrxn genes in the 5-HT system is poorly understood. Here, we generated a mouse model with all three Nrxn genes disrupted specifically in 5-HT neurons to study how Nrxns affect 5-HT transmission. Loss of Nrxns in 5-HT neurons reduced the number of serotonin neurons in the early postnatal stage, impaired 5-HT release, and decreased 5-HT release sites and serotonin transporter expression. Furthermore, 5-HT neuron-specific Nrxn knockout reduced sociability and increased depressive-like behavior. Our results highlight functional roles for Nrxns in 5-HT neurotransmission, 5-HT neuron survival, and the execution of complex behaviors.


Assuntos
Transtorno do Espectro Autista , Serotonina , Camundongos , Animais , Serotonina/metabolismo , Neurônios Serotoninérgicos , Transtorno do Espectro Autista/metabolismo , Transmissão Sináptica/fisiologia , Encéfalo/metabolismo
6.
Genes Cells ; 28(2): 156-169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36530170

RESUMO

Extended pluripotent stem cells (EPSCs) derived from mice and humans showed an enhanced potential for chimeric formation. By exploiting transcriptomic approaches, we assessed the differences in gene expression profile between extended EPSCs derived from mice and humans, and those newly derived from the common marmoset (marmoset; Callithrix jacchus). Although the marmoset EPSC-like cells displayed a unique colony morphology distinct from murine and human EPSCs, they displayed a pluripotent state akin to embryonic stem cells (ESCs), as confirmed by gene expression and immunocytochemical analyses of pluripotency markers and three-germ-layer differentiation assay. Importantly, the marmoset EPSC-like cells showed interspecies chimeric contribution to mouse embryos, such as E6.5 blastocysts in vitro and E6.5 epiblasts in vivo in mouse development. Also, we discovered that the perturbation of gene expression of the marmoset EPSC-like cells from the original ESCs resembled that of human EPSCs. Taken together, our multiple analyses evaluated the efficacy of the method for the derivation of marmoset EPSCs.


Assuntos
Callithrix , Células-Tronco Embrionárias , Animais , Humanos , Camundongos , Células-Tronco Embrionárias/metabolismo , Diferenciação Celular , Perfilação da Expressão Gênica , Transcriptoma
7.
Sci Rep ; 12(1): 14883, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050466

RESUMO

Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Adipócitos Marrons , Tecido Adiposo Marrom/metabolismo , Animais , Colina/metabolismo , Metilaminas , Camundongos , Infarto do Miocárdio/metabolismo , Termogênese/genética
8.
Sci Rep ; 12(1): 14923, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056157

RESUMO

TAR DNA-binding protein 43 kDa (TDP-43), a nuclear protein, plays an important role in the molecular pathogenesis of amyotrophic lateral sclerosis (ALS). The long-disordered C-terminal region (CTR) of TDP-43 is known to be aggregation-prone and a hotspot for ALS mutations, so elucidation of the physiological function of CTR will provide insights into the pathogenesis of ALS. The CTR has two Gly, aromatic, and Ser-rich (GaroS) segments and an amyloidogenic core divided into a hydrophobic patch (HP) and a Gln/Asn (Q/N)-rich segment. Although TDP-43 lacking the CTR is known to be unstable, as observed in knock-in mice, it is unclear which of these segments contributes to the stability of TDP-43. Here, we generated 12 mouse lines lacking the various sub-regions of CTR by genome editing and compared the embryonic lethality of homozygotes, and protein and mRNA expression levels of TDP-43. We demonstrated the functional diversity of the four segments of CTR, finding that the presence of the Q/N-rich segment greatly restored the protein stability of TDP-43. In addition, we found that the second GaroS deletion did not affect protein stability and mouse development.


Assuntos
Proteínas de Ligação a DNA/química , Estabilidade Proteica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Camundongos , Mutação
9.
Sci Rep ; 12(1): 15424, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104440

RESUMO

Posture and gait are maintained by sensory inputs from the vestibular, visual, and somatosensory systems and motor outputs. Upon vestibular damage, the visual and/or somatosensory systems functionally substitute by cortical mechanisms called "sensory reweighting". We investigated the cerebrocortical mechanisms underlying sensory reweighting after unilateral labyrinthectomy (UL) in mice. Arc-dVenus transgenic mice, in which the gene encoding the fluorescent protein dVenus is transcribed under the control of the promoter of the immediate early gene Arc, were used in combination with whole-brain three-dimensional (3D) imaging. Performance on the rotarod was measured as a behavioral correlate of sensory reweighting. Following left UL, all mice showed the head roll-tilt until UL10, indicating the vestibular periphery damage. The rotarod performance worsened in the UL mice from UL1 to UL3, which rapidly recovered. Whole-brain 3D imaging revealed that the number of activated neurons in S1, but not in V1, in UL7 was higher than that in sham-treated mice. At UL7, medial prefrontal cortex (mPFC) and agranular insular cortex (AIC) activation was also observed. Therefore, sensory reweighting to the somatosensory system could compensate for vestibular dysfunction following UL; further, mPFC and AIC contribute to the integration of sensory and motor functions to restore balance.


Assuntos
Vestíbulo do Labirinto , Animais , Córtex Cerebral , Camundongos , Neurônios/fisiologia , Postura , Vestíbulo do Labirinto/fisiologia
10.
Front Behav Neurosci ; 16: 751053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309682

RESUMO

Dopaminergic neurotransmission via dopamine D1 receptors (D1Rs) is considered to play an important role not only in reward-based learning but also in aversive learning. The contextual and auditory cued fear conditioning tests involve the processing of classical fear conditioning and evaluates aversive learning memory. It is possible to evaluate aversive learning memory in two different types of neural transmission circuits. In addition, when evaluating the role of dopaminergic neurotransmission via D1R, to avoid the effects in D1R-mediated neural circuitry alterations during development, it is important to examine using mice who D1R expression in the mature stage is suppressed. Herein, we investigated the role of dopaminergic neurotransmission via D1Rs in aversive memory formation in contextual and auditory cued fear conditioning tests using D1R knockdown (KD) mice, in which the expression of D1Rs could be conditionally and reversibly controlled with doxycycline (Dox) treatment. For aversive memory, we examined memory formation using recent memory 1 day after conditioning, and remote memory 4 weeks after conditioning. Furthermore, immunostaining of the brain tissues of D1RKD mice was performed after aversive footshock stimulation to investigate the distribution of activated c-Fos, an immediate-early gene, in the hippocampus (CA1, CA3, dentate gyrus), striatum, amygdala, and prefrontal cortex during aversive memory formation. After aversive footshock stimulation, immunoblotting was performed using hippocampal, striatal, and amygdalar samples from D1RKD mice to investigate the increase in the amount of c-Fos and phosphorylated SNAP-25 at Ser187 residue. When D1R expression was suppressed using Dox, behavioral experiments revealed impaired contextual fear learning in remote aversion memory following footshock stimulation. Furthermore, expression analysis showed a slight increase in the post-stimulation amount of c-Fos in the hippocampus and striatum, and a significant increase in the amount of phosphorylated SNAP-25 in the hippocampus, striatum, and prefrontal cortex before and after stimulation. These findings indicate that deficiency in D1R-mediated dopaminergic neurotransmission is an important factor in impairing contextual fear memory formation for remote memory.

11.
Sci Rep ; 12(1): 3566, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246592

RESUMO

When writing an object's name, humans mentally construct its spelling. This capacity critically depends on use of the dual-structured linguistic system, in which meaningful words are represented by combinations of meaningless letters. Here we search for the evolutionary origin of this capacity in primates by designing dual-structured bigram symbol systems where different combinations of meaningless elements represent different objects. Initially, we trained Japanese macaques (Macaca fuscata) in an object-bigram symbolization task and in a visually-guided bigram construction task. Subsequently, we conducted a probe test using a symbolic bigram construction task. From the initial trial of the probe test, the Japanese macaques could sequentially choose the two elements of a bigram that was not actually seen but signified by a visually presented object. Moreover, the animals' spontaneous choice order bias, developed through the visually-guided bigram construction learning, was immediately generalized to the symbolic bigram construction test. Learning of dual-structured symbols by the macaques possibly indicates pre-linguistic adaptations for the ability of mentally constructing symbols in the common ancestors of humans and Old World monkeys.


Assuntos
Macaca fuscata , Macaca , Animais , Aprendizagem
12.
FASEB J ; 36(2): e22160, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35064699

RESUMO

Dopamine in the prefrontal cortex is essential for the regulation of social behavior. However, stress-causing social withdrawal also promotes dopamine release in the prefrontal cortex. Thus, this evidence suggests opposite functions of dopamine in the prefrontal cortex. However, the influence of dopamine on prefrontal functions is yet to be fully understood. Here, we show that dopamine differentially modulated the neuronal activity triggered by social stimuli in the prefrontal cortex, depending on the duration of the dopamine activation (transient or sustained activation). Using chemogenetic techniques, we have found that social behavior was negatively regulated by a sustained increase in dopamine neuronal activity in the ventral tegmental area, while it was positively regulated by an acute increase. The duration of social interactions was positively correlated with the transient dopamine release triggered by social stimuli in the prefrontal cortex and negatively correlated with the sustained increase in prefrontal dopamine levels. Furthermore, the elevation of neural calcium signal, triggered by social stimuli, in the prefrontal cortex was attenuated by the persistent elevation of prefrontal dopamine levels, whereas an acute increase in dopamine levels enhanced it. Additionally, the chronic excess of dopamine suppressed c-Fos induction triggered by social stimuli in prefrontal neurons expressing dopamine D1 receptors, but not D2 receptors. These results suggest that sustained activation of prefrontal dopamine, at the opposite of its transient activation, can reduce prefrontal activity associated with social behavior, even for identical dopamine concentrations. Thus, dopamine plays opposite roles in modulating prefrontal activity depending on the duration of its action.


Assuntos
Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Transgênicos/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Comportamento Social , Área Tegmentar Ventral/metabolismo
13.
Transplant Proc ; 54(2): 507-512, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35065829

RESUMO

BACKGROUND: Evaluation of an experimental and preclinical islet transplantation (IsletTx) model to elucidate associated clinical problems is vital. This study aimed to introduce a simple methodology for producing a swine autologous IsletTx model as a preliminary step in an allogeneic transplant experiment. METHODS AND MATERIALS: Twenty-seven pigs were included in the study. Total pancreatectomy (TP) was performed in 8 pigs (TP group), TP with autologous IsletTx in 9 (TP + IsletTx group), and distal pancreatectomy (DP) with autologous IsletTx in 10 (DP + IsletTx group). An open biopsy was performed on all pigs during postoperative day 14 using an infrared imaging (IRI) system. Laboratory data and postoperative survival were analyzed and compared according to the procedures done. RESULTS: Postoperative survival rate was significantly higher in the pigs with autologous IsletTx than in those without (P = .026). There were no significant differences in survival between the TP + IsletTx and DP + IsletTx groups (P = .746). Significant hyperglycemia was not observed in both groups, but the DP + IsletTx group remained relatively stable throughout the postoperative course. There were no differences in serum creatinine, aspartate aminotransferase, and alanine aminotransferase levels between the 2 groups. By selective liver lobe transplantation and administration of the IRI system, localization of the transplanted islets via open biopsy was achieved. CONCLUSIONS: We successfully developed an autologous IsletTx model and an open biopsy system using a swine model. This study will aid in the development of an allogeneic IsletTx experiment that may improve transplantation outcomes.


Assuntos
Hiperglicemia , Transplante das Ilhotas Pancreáticas , Animais , Humanos , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/métodos , Pancreatectomia/efeitos adversos , Pancreatectomia/métodos , Suínos , Transplante Autólogo , Transplante Homólogo
14.
J Biol Chem ; 296: 100544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33737022

RESUMO

Dopamine (DA) exerts well-known functions in the brain as a neurotransmitter. In addition, it plays important physiological roles in peripheral organs, but it is largely unknown how and where peripheral DA is synthesized and regulated. Catecholamines in peripheral tissues are either produced within the tissue itself and/or derived from sympathetic neurons, which release neurotransmitters for uptake by peripheral tissues. To evaluate DA-producing ability of each peripheral tissue, we generated conditional KO mice (cKO mice) in which the tyrosine hydroxylase (TH) gene is ablated in the sympathoadrenal system, thus eliminating sympathetic neurons as a DA source. We then examined the alterations in the noradrenaline (NA), DA, and 3,4-dihydroxyphenylalanine (DOPA) contents in peripheral organs and performed immunohistochemical analyses of TH-expressing cells. In the heart and pancreas of cKO mice, both the TH protein and NA levels were significantly decreased, and the DA contents were decreased in parallel with NA contents, indicating that the DA supply originated from sympathetic neurons. We found TH-immunoreactive cells in the stomach and lung, where the TH protein showed a decreasing trend, but the DA levels were not decreased in cKO mice. Moreover, we found a significant correlation between the DA content in the kidney and the plasma DOPA concentration, suggesting that the kidney takes up DOPA from blood to make DA. The aforementioned data unravel differences in the DA biosynthetic pathway among tissues and support the role of sympathetic neurons as a DA supplier.


Assuntos
Glândulas Suprarrenais/metabolismo , Vias Biossintéticas , Catecolaminas/metabolismo , Dopamina/biossíntese , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo , Tirosina 3-Mono-Oxigenase/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos
15.
Biomedicines ; 9(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429895

RESUMO

α-synuclein accumulation into dopaminergic neurons is a pathological hallmark of Parkinson's disease. We previously demonstrated that fatty acid-binding protein 3 (FABP3) is critical for α-synuclein uptake and propagation to accumulate in dopaminergic neurons. FABP3 is abundant in dopaminergic neurons and interacts with dopamine D2 receptors, specifically the long type (D2L). Here, we investigated the importance of dopamine D2L receptors in the uptake of α-synuclein monomers and their fibrils. We employed mesencephalic neurons derived from dopamine D2L -/-, dopamine D2 receptor null (D2 null), FABP3-/-, and wild type C57BL6 mice, and analyzed the uptake ability of fluorescence-conjugated α-synuclein monomers and fibrils. We found that D2L receptors are co-localized with FABP3. Immunocytochemistry revealed that TH+ D2L-/- or D2 null neurons do not take up α-synuclein monomers. The deletion of α-synuclein C-terminus completely abolished the uptake to dopamine neurons. Likewise, dynasore, a dynamin inhibitor, and caveolin-1 knockdown also abolished the uptake. D2L and FABP3 were also critical for α-synuclein fibrils uptake. D2L and accumulated α-synuclein fibrils were well co-localized. These data indicate that dopamine D2L with a caveola structure coupled with FABP3 is critical for α-synuclein uptake by dopaminergic neurons, suggesting a novel pathogenic mechanism of synucleinopathies, including Parkinson's disease.

16.
Front Endocrinol (Lausanne) ; 11: 609697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381086

RESUMO

The generation of mature, functional, thyroid follicular cells from pluripotent stem cells would potentially provide a therapeutic benefit for patients with hypothyroidism, but in vitro differentiation remains difficult. We earlier reported the in vivo generation of lung organs via blastocyst complementation in fibroblast growth factor 10 (Fgf10), compound, heterozygous mutant (Fgf10 Ex1mut/Ex3mut) mice. Fgf10 also plays an essential role in thyroid development and branching morphogenesis, but any role thereof in thyroid organogenesis remains unclear. Here, we report that the thyroids of Fgf10 Ex1mut/Ex3mut mice exhibit severe hypoplasia, and we generate thyroid tissues from mouse embryonic stem cells (ESCs) in Fgf10 Ex1mut/Ex3mut mice via blastocyst complementation. The tissues were morphologically normal and physiologically functional. The thyroid follicular cells of Fgf10 Ex1mut/Ex3mut chimeric mice were derived largely from GFP-positive mouse ESCs although the recipient cells were mixed. Thyroid generation in vivo via blastocyst complementation will aid functional thyroid regeneration.


Assuntos
Blastocisto , Células-Tronco Embrionárias Murinas , Glândula Tireoide/crescimento & desenvolvimento , Animais , Quimera , Exoma/genética , Feminino , Fator 10 de Crescimento de Fibroblastos/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Mutação , Gravidez , Disgenesia da Tireoide/genética , Glândula Tireoide/ultraestrutura , Microtomografia por Raio-X
17.
Elife ; 92020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33355091

RESUMO

Synapse formation and regulation require signaling interactions between pre- and postsynaptic proteins, notably cell adhesion molecules (CAMs). It has been proposed that the functions of neuroligins (Nlgns), postsynaptic CAMs, rely on the formation of trans-synaptic complexes with neurexins (Nrxns), presynaptic CAMs. Nlgn3 is a unique Nlgn isoform that localizes at both excitatory and inhibitory synapses. However, Nlgn3 function mediated via Nrxn interactions is unknown. Here we demonstrate that Nlgn3 localizes at postsynaptic sites apposing vesicular glutamate transporter 3-expressing (VGT3+) inhibitory terminals and regulates VGT3+ inhibitory interneuron-mediated synaptic transmission in mouse organotypic slice cultures. Gene expression analysis of interneurons revealed that the αNrxn1+AS4 splice isoform is highly expressed in VGT3+ interneurons as compared with other interneurons. Most importantly, postsynaptic Nlgn3 requires presynaptic αNrxn1+AS4 expressed in VGT3+ interneurons to regulate inhibitory synaptic transmission. Our results indicate that specific Nlgn-Nrxn signaling generates distinct functional properties at synapses.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Neurônios GABAérgicos/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Feminino , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sinapses/fisiologia
18.
Brain Nerve ; 72(11): 1135-1142, 2020 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-33191292

RESUMO

Dopamine (DA) plays an important role in the basal ganglia (BG) for motor control, and DA deficiency as seen in Parkinson's disease, causes movement disorders. DA activates the direct pathway nerve via the D1 receptor (D1R) and inhibits the indirect pathway nerve via the D2 receptor (D2R). To understand the role of DA signaling, we review recent studies of the roles of D1R and D2R with respect to motor control, neural activity and memory learning using genetically engineered mice, and investigate their involvement in the BG oscillation phenomenon.


Assuntos
Dopamina , Receptores de N-Metil-D-Aspartato , Animais , Gânglios da Base , Humanos , Camundongos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2
19.
Nat Commun ; 11(1): 4364, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868781

RESUMO

Pathophysiological roles of cardiac dopamine system remain unknown. Here, we show the role of dopamine D1 receptor (D1R)-expressing cardiomyocytes (CMs) in triggering heart failure-associated ventricular arrhythmia. Comprehensive single-cell resolution analysis identifies the presence of D1R-expressing CMs in both heart failure model mice and in heart failure patients with sustained ventricular tachycardia. Overexpression of D1R in CMs disturbs normal calcium handling while CM-specific deletion of D1R ameliorates heart failure-associated ventricular arrhythmia. Thus, cardiac D1R has the potential to become a therapeutic target for preventing heart failure-associated ventricular arrhythmia.


Assuntos
Arritmias Cardíacas/etiologia , Insuficiência Cardíaca , Miócitos Cardíacos/metabolismo , Receptores de Dopamina D1/metabolismo , Animais , Arritmias Cardíacas/prevenção & controle , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Receptores de Dopamina D1/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/prevenção & controle
20.
Cell Rep ; 31(6): 107626, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32402288

RESUMO

The shortage of donor lungs hinders lung transplantation, the only definitive option for patients with end-stage lung disease. Blastocyst complementation enables the generation of transplantable organs from pluripotent stem cells (PSCs) in animal models. Pancreases and kidneys have been generated from PSCs by blastocyst complementation in rodent models. Here, we report the generation of lungs using mouse embryonic stem cells (ESCs) in apneumic Fgf10 Ex1mut/Ex3mutmice by blastocyst complementation. Complementation with ESCs enables Fgf10-deficient mice to survive to adulthood without abnormalities. Both the generated lung alveolar parenchyma and the interstitial portions, including vascular endothelial cells, vascular and parabronchial smooth muscle cells, and connective tissue, largely originate from the injected ESCs. These data suggest that Fgf10 Ex1mut/Ex3mutblastocysts provide an organ niche for lung generation and that blastocyst complementation could be a viable approach for generating whole lungs.


Assuntos
Blastocisto/metabolismo , Fator 10 de Crescimento de Fibroblastos/deficiência , Pulmão/fisiopatologia , Animais , Quimerismo , Modelos Animais de Doenças , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA