Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Small ; 20(42): e2402357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38881321

RESUMO

2D heterostructuring is a versatile methodology for designing nanoarchitecture catalytic systems that allow for reconstruction and modulation of interfaces and electronic structures. However, catalysts with such structures are extremely scarce due to limited synthetic strategies. Here, a highly ordered 2D Ru/Si/Ru/Si… nano-heterostructures (RSHS) is reported by acid etching of the LaRuSi electride. RSHS shows a superior electrocatalytic activity for hydrogen evolution with an overpotential of 14 mV at 10 mA cm-2 in alkaline media. Both experimental analyses and first-principles calculations demonstrate that the electronic states of Ru can be tuned by strong interactions of the interfacial Ru-Si, leading to an optimized hydrogen adsorption energy. Moreover, due to the synergistic effect of Ru and Si, the energy barrier of water dissociation is significantly reduced. The well-organized superlattice structure will provide a paradigm for construction of efficient catalysts with tunable electronic states and dual active sites.

2.
J Phys Chem Lett ; 14(42): 9516-9520, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37852194

RESUMO

For the extraction of hydrogen from ammonia at low temperatures, we investigated Ni-based catalysts fabricated by the thermal decomposition of RNi5 intermetallics (R = Ce or Y). The interconnected microstructure formed via phase separation between the Ni catalyst and the resulting oxide support was observed to evolve via low-temperature thermal decomposition of RNi5. The resulting Ni/CeO2 nanocomposite exhibited superior catalytic activity of ∼25% at 400 °C for NH3 cracking. The high catalytic activity was attributed to the interlocking of Ni nanoparticles with the CeO2 framework. The growth of Ni nanoparticles was prevented by this interconnected microstructure, in which the Ni nanoparticles incorporated nitrogen owing to the size effect, whereas Ni does not commonly form nitrides. To the best of our knowledge, this is a unique example of a microstructure that enhances catalytic NH3 cracking.

3.
Sci Adv ; 9(38): eadh9104, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37738353

RESUMO

Topological materials have received much attention because of their robust topological surface states, which can be potentially applied in electronics and catalysis. Here, we show that the topological insulator bismuth selenide functions as an efficient catalyst for the oxidative carbonylation of amines with carbon monoxide and dioxygen to synthesize urea derivatives. For example, the carbonylation of butylamine can be completed over bismuth selenide nanoparticle catalyst in 4 hours at 20°C with a yield of 99%, whereas most noble metal-based catalysts do not function at such a low temperature. Density functional theory calculations further reveal that the topological surface states facilitate the activation of dioxygen through a triplet-to-singlet spin-conversion reaction, in which active oxygen species are formed with a barrier of 0.4 electron volts for the subsequent reactions with amine and carbon monoxide.

4.
J Am Chem Soc ; 145(19): 10669-10680, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37129031

RESUMO

Electrides are promising support materials to promote transition metal catalysts for ammonia synthesis due to their strong electron-donating ability. Cobalt (Co) is an alternative non-noble metal catalyst to ruthenium in ammonia synthesis; however, it is difficult to achieve acceptable activity at low temperatures due to the weak Co-N interaction. Here, we report a novel oxyhydride electride, BaAl2O4-xHy, that can significantly promote ammonia synthesis over Co (500 mmol gCo-1 h-1 at 340 °C and 0.90 MPa) with a very low activation energy (49.6 kJ mol-1; 260-360 °C), which outperforms the state-of-the-art Co-based catalysts, being comparable to the latest Ru catalyst at 300 °C. BaAl2O4-xHy with a stuffed tridymite structure has interstitial cage sites where anionic electrons are accommodated. The surface of BaAl2O4-xHy with very low work functions (1.7-2.6 eV) can donate electrons strongly to Co, which largely facilitates N2 reduction into ammonia with the aid of the lattice H- ions. The stuffed tridymite structure of BaAl2O4-xHy with a three-dimensional AlO4-based tetrahedral framework has great chemical stability and protects the accommodated electrons and H- ions from oxidation, leading to robustness toward the ambient atmosphere and good reusability, which is a significant advantage over the reported hydride-based catalysts.

5.
J Am Chem Soc ; 145(21): 11650-11658, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37192284

RESUMO

Blue-emitting Cs3Cu2I5 has attracted attention owing to its near-unity PL quantum yield and applications in DUV photodetectors and scintillators. Its PL properties originate from the unique local structure around the luminescent center, the [Cu2I5]3- polyhedron iodocuprate anion consisting of the edge-shared CuI3 triangle and the CuI4 tetrahedron dimer, which is isolated by Cs+ ions. We found that solid-state reactions between CsI and CuI occur near room temperature (RT) to form Cs3Cu2I5 and/or CsCu2I3 phases. High-quality thin films of these phases were obtained by the sequential deposition of CuI and CsI by thermal evaporation. We elucidated that the formation of interstitial Cu+ and the antisite of I- at the Cs+ site in the CsI crystal through Cu+ and I- diffusion results in the RT synthesis of Cs3Cu2I5. The unique structure formation of the luminescent center was revealed using a model based on the low packing density of the CsCl-type crystal structure, similar sizes of Cs+ and I- ions, and the high diffusivity of Cu+. The self-aligned patterning of the luminous regions on thin films was demonstrated.

6.
J Am Chem Soc ; 145(17): 9410-9416, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36995761

RESUMO

CO2 hydrogenation to methanol is one of the most promising routes to CO2 utilization. However, difficulty in CO2 activation at low temperature, catalyst stability, catalyst preparation, and product separation are obstacles to the realization of a practical hydrogenation process under mild conditions. Here, we report a PdMo intermetallic catalyst for low-temperature CO2 hydrogenation. This catalyst can be synthesized by the facile ammonolysis of an oxide precursor and exhibits excellent stability in air and the reaction atmosphere and significantly enhances the catalytic activity for CO2 hydrogenation to methanol and CO compared with a Pd catalyst. A turnover frequency of 0.15 h-1 was achieved for methanol synthesis at 0.9 MPa and 25 °C, which is comparable to or higher than that of the state-of-the-art heterogeneous catalysts under higher-pressure conditions (4-5 MPa).

7.
Angew Chem Int Ed Engl ; 61(47): e202211759, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36161686

RESUMO

Metal nitride complexes have recently been proposed as an efficient noble-metal-free catalyst for ammonia synthesis utilizing a dual active site concept. However, their high sensitivity to air and moisture has restricted potential applications. We report that their chemical sensitivity can be improved by introducing Al into the LaN lattice, thereby forming La-Al metallic bonds (La-Al-N). The catalytic activity and mechanism of the resulting TM/La-Al-N (TM=Ni, Co) are comparable to the previously reported TM/LaN catalyst. Notably, the catalytic activity did not degrade after exposure to air and moisture. Kinetic analysis and isotopic experiment showed that La-Al-N is responsible for N2 absorption and activation despite substantial Al being introduced into its lattice because the local coordination of the lattice N remained largely unchanged. These findings show the effectiveness of metallic bond formation, which can support the chemical stability of rare-earth nitrides with retention of catalytic functionality.

8.
Small ; 18(31): e2202298, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35796191

RESUMO

Recently, an "interlayer" has been often adopted in organic-inorganic hybrid perovskite light-emitting diodes (PeLEDs). The term "interlayer" infers that the layer function is not clear, but it improves electroluminescence (EL) performance. In this respect, it is of interest to determine the exact role of the interlayer and how it works in PeLEDs. In this study, the interlayer is determined to play a crucial role in suppressing the chemical reaction between the metal oxide and hybrid perovskite layers. Nevertheless, the use of an interlayer, a wide gap insulator, does not guarantee the best PeLED performance because it hinders charge injection into the emission layer. Here, a method is proposed that does not apply an "interlayer" but enables simultaneous attainment of high EL performance and outstanding device stability. 18-crown 6-ether (18C6) additive (2.5 mg mL-1 ) is found to fully suppress the chemical reaction between the metal oxide and hybrid perovskite layers. With the 18C6 additive, an 82-fold longer device lifetime and very low operating voltage (3.2 V at 10 000 cd m-2 ) are demonstrated in a PeLED.

9.
J Am Chem Soc ; 144(14): 6453-6464, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35380439

RESUMO

We present heavily H--doped BaTiO(3-x)Hx (x ≈ 1) as an efficient and water-durable catalyst support for Pd nanoparticles applicable to liquid-phase hydrogenation reactions. The BaTiO(3-x)Hx oxyhydride with a hexagonal crystal structure (P63/mmc) was synthesized by the direct reaction of BaH2 and TiO2 at 800 °C under a stream of hydrogen, and the estimated chemical composition was BaTiO2.01H0.96. Density functional theory calculations and magnetic measurements indicated that such heavy H- doping results in a metallic nature with delocalized electrons and a low work function. The potential of BaTiO(3-x)Hx as a catalyst support was examined for the selective hydrogenation of unsaturated C-C bonds by Pd nanoparticles deposited on BaTiO(3-x)Hx. We found that the turnover frequency for phenylacetylene hydrogenation per total amount of Pd in Pd/BaTiO(3-x)Hx was the highest among the supported Pd catalysts reported to date. The strong electronic charge transfer between Pd and the support, as confirmed by X-ray photoelectron spectroscopy measurements, can be attributed to be responsible for such high catalytic activity. The combination of the BaTiO(3-x)Hx support and Pd nanoparticles provides for the selective hydrogenation of unsaturated C-C bonds and highlights the validity of catalyst design that integrates H- in support materials.

10.
Adv Sci (Weinh) ; 9(5): e2104993, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34927379

RESUMO

Metal halide perovskites (MHPs) are plausible candidates for practical p-type semiconductors. However, in thin film transistor (TFT) applications, both 2D PEA2 SnI4 and 3D FASnI3 MHPs have different drawbacks. In 2D MHP, the TFT mobility is seriously reduced by grain-boundary issues, whereas 3D MHP has an uncontrollably high hole density, which results in quite a large threshold voltage (Vth ). To overcome these problems, a new concept based on a 2D-3D core-shell structure is herein proposed. In the proposed structure, a 3D MHP core is fully isolated by a 2D MHP, providing two desirable effects as follows. (i) Vth can be independently controlled by the 2D component, and (ii) the grain-boundary resistance is significantly improved by the 2D/3D interface. Moreover, SnF2 additives are used, and they facilitate the formation of the 2D/3D core-shell structure. Consequently, a high-performance p-type Sn-based MHP TFT with a field-effect mobility of ≈25 cm2 V-1 s-1 is obtained. The voltage gain of a complementary metal oxide semiconductor (CMOS) inverter comprising an n-channel InGaZnOx TFT and a p-channel Sn-MHP TFT is ≈200 V/V at VDD = 20 V. Overall, the proposed 2D/3D core-shell structure is expected to provide a new route for obtaining high-performance MHP TFTs.

11.
J Phys Chem Lett ; 12(46): 11245-11251, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34762437

RESUMO

While using hydride precursors, such as TiH2, can promote the formation of some MAX phases, the mechanism for this stabilization effect by hydrogen has been unsolved. Herein, we report a facile synthesis method of Ti2AC (A = Zn, Al, In, and Ga) MAX phases using hydrogen as the phase stabilizer at their crystallographic voids. DFT calculations revealed that hydrogen could be incorporated in the center of the Ti3A (A = Zn, Al, Ga, and In) cages of Ti2AC MAX phases. The hydrogen is accommodated as an anion as a result of electron transfer from the surrounding Ti and A to H, leading to the stabilized state through Coulomb interaction between (Ti3A)δ+ and H-. Consequently, high-purity Ti2AC (A = Zn, Al, Ga, and In) was directly synthesized under pressure-less and milder temperature conditions by simply employing TiH2 as the precursor. These findings indicate that utilizing hydrogen could be one of the experimental parameters to facilitate the formation of materials having crystallographic voids.

12.
J Am Chem Soc ; 143(32): 12857-12866, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34369762

RESUMO

The current catalytic reaction mechanism for ammonia synthesis relies on either dissociative or associative routes, in which adsorbed N2 dissociates directly or is hydrogenated step-by-step until it is broken upon the release of NH3 through associative adsorption. Here, we propose a concerted mechanism of associative and dissociative routes for ammonia synthesis over a cobalt-loaded nitride catalyst. Isotope exchange experiments reveal that the adsorbed N2 can be activated on both Co metal and the nitride support, which leads to superior low-temperature catalytic performance. The cooperation of the surface low work function (2.6 eV) feature and the formation of surface nitrogen vacancies on the CeN support gives rise to a dual pathway for N2 activation with much reduced activation energy (45 kJ·mol-1) over that of Co-based catalysts reported so far, which results in efficient ammonia synthesis under mild conditions.

13.
Sci Adv ; 7(12)2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33741599

RESUMO

Material properties depend largely on the dimensionality of the crystal structures and the associated electronic structures. If the crystal-structure dimensionality can be switched reversibly in the same material, then a drastic property change may be controllable. Here, we propose a design route for a direct three-dimensional (3D) to 2D structural phase transition, demonstrating an example in (Pb1-x Sn x )Se alloy system, where Pb2+ and Sn2+ have similar ns2 pseudo-closed shell configurations, but the former stabilizes the 3D rock-salt-type structure while the latter a 2D layered structure. However, this system has no direct phase boundary between these crystal structures under thermal equilibrium. We succeeded in inducing the direct 3D-2D structural phase transition in (Pb1-x Sn x )Se alloy epitaxial films by using a nonequilibrium growth technique. Reversible giant electronic property change was attained at x ~ 0.5 originating in the abrupt band structure switch from gapless Dirac-like state to semiconducting state.

14.
Sci Bull (Beijing) ; 66(4): 327-331, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36654411

RESUMO

Vacancies are prevalent and versatile in solid-state physics and materials science. The role of vacancies in strongly correlated materials, however, remains uncultivated until now. Here, we report the discovery of an unprecedented vacancy state forming an extended buckled-honeycomb-vacancy (BHV) ordering in Ir16Sb18. Superconductivity emerges by suppressing the BHV ordering through squeezing of extra Ir atoms into the vacancies or isovalent Rh substitution. The phase diagram on vacancy ordering reveals the superconductivity competes with the BHV ordering. Further theoretical calculations suggest that this ordering originates from a synergistic effect of the vacancy formation energy and Fermi surface nesting with a wave vector of (1/3, 1/3, 0). The buckled structure breaks the crystal inversion symmetry and can mostly suppress the density of states near the Fermi level. The peculiarities of BHV ordering highlight the importance of "correlated vacancies" and may serve as a paradigm for exploring other non-trivial excitations and quantum criticality.

15.
J Am Chem Soc ; 142(33): 14374-14383, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32787255

RESUMO

Ammonia is one of the most important feedstocks for the production of fertilizer and as a potential energy carrier. Nitride compounds such as LaN have recently attracted considerable attention due to their nitrogen vacancy sites that can activate N2 for ammonia synthesis. Here, we propose a general rule for the design of nitride-based catalysts for ammonia synthesis, in which the nitrogen vacancy formation energy (ENV) dominates the catalytic performance. The relatively low ENV (ca. 1.3 eV) of CeN means it can serve as an efficient and stable catalyst upon Ni loading. The catalytic activity of Ni/CeN reached 6.5 mmol·g-1·h-1 with an effluent NH3 concentration (ENH3) of 0.45 vol %, reaching the thermodynamic equilibrium (ENH3 = 0.45 vol %) at 400 °C and 0.1 MPa, thereby circumventing the bottleneck for N2 activation on Ni metal with an extremely weak nitrogen binding energy. The activity far exceeds those for other Co- and Ni-based catalysts, and is even comparable to those for Ru-based catalysts. It was determined that CeN itself can produce ammonia without Ni-loading at almost the same activation energy. Kinetic analysis and isotope experiments combined with density functional theory (DFT) calculations indicate that the nitrogen vacancies in CeN can activate both N2 and H2 during the reaction, which accounts for the much higher catalytic performance than other reported nonloaded catalysts for ammonia synthesis.

16.
Nature ; 583(7816): 391-395, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32669696

RESUMO

Ammonia (NH3) is pivotal to the fertilizer industry and one of the most commonly produced chemicals1. The direct use of atmospheric nitrogen (N2) had been challenging, owing to its large bond energy (945 kilojoules per mole)2,3, until the development of the Haber-Bosch process. Subsequently, many strategies have been explored to reduce the activation barrier of the N≡N bond and make the process more efficient. These include using alkali and alkaline earth metal oxides as promoters to boost the performance of traditional iron- and ruthenium-based catalysts4-6 via electron transfer from the promoters to the antibonding bonds of N2 through transition metals7,8. An electride support further lowers the activation barrier because its low work function and high electron density enhance electron transfer to transition metals9,10. This strategy has facilitated ammonia synthesis from N2 dissociation11 and enabled catalytic operation under mild conditions; however, it requires the use of ruthenium, which is expensive. Alternatively, it has been shown that nitrides containing surface nitrogen vacancies can activate N2 (refs. 12-15). Here we report that nickel-loaded lanthanum nitride (LaN) enables stable and highly efficient ammonia synthesis, owing to a dual-site mechanism that avoids commonly encountered scaling relations. Kinetic and isotope-labelling experiments, as well as density functional theory calculations, confirm that nitrogen vacancies are generated on LaN with low formation energy, and efficiently bind and activate N2. In addition, the nickel metal loaded onto the nitride dissociates H2. The use of distinct sites for activating the two reactants, and the synergy between them, results in the nickel-loaded LaN catalyst exhibiting an activity that far exceeds that of more conventional cobalt- and nickel-based catalysts, and that is comparable to that of ruthenium-based catalysts. Our results illustrate the potential of using vacancy sites in reaction cycles, and introduce a design concept for catalysts for ammonia synthesis, using naturally abundant elements.

17.
Nat Commun ; 11(1): 1020, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32094365

RESUMO

Single-atom catalysts (SACs) have attracted significant attention because they exhibit unique catalytic performance due to their ideal structure. However, maintaining atomically dispersed metal under high temperature, while achieving high catalytic activity remains a formidable challenge. In this work, we stabilize single platinum atoms within sub-nanometer surface cavities in well-defined 12CaO·7Al2O3 (C12A7) crystals through theoretical prediction and experimental process. This approach utilizes the interaction of isolated metal anions with the positively charged surface cavities of C12A7, which allows for severe reduction conditions up to 600 °C. The resulting catalyst is stable and highly active toward the selective hydrogenation of nitroarenes with a much higher turnover frequency (up to 25772 h-1) than well-studied Pt-based catalysts. The high activity and selectivity result from the formation of stable trapped single Pt atoms, which leads to heterolytic cleavage of hydrogen molecules in a reaction that involves the nitro group being selectively adsorbed on C12A7 surface.

18.
Sci Adv ; 5(11): eaax9989, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31763457

RESUMO

Heterostructures having both magnetism and topology are promising materials for the realization of exotic topological quantum states while challenging in synthesis and engineering. Here, we report natural magnetic van der Waals heterostructures of (MnBi2Te4) m (Bi2Te3) n that exhibit controllable magnetic properties while maintaining their topological surface states. The interlayer antiferromagnetic exchange coupling is gradually weakened as the separation of magnetic layers increases, and an anomalous Hall effect that is well coupled with magnetization and shows ferromagnetic hysteresis was observed below 5 K. The obtained homogeneous heterostructure with atomically sharp interface and intrinsic magnetic properties will be an ideal platform for studying the quantum anomalous Hall effect, axion insulator states, and the topological magnetoelectric effect.

19.
ACS Appl Mater Interfaces ; 11(43): 40300-40309, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31584254

RESUMO

Amorphous InGaZnOx (a-IGZO) thin-film transistors (TFTs) are currently used in flat-panel displays due to their beneficial properties. However, the mobility of ∼10 cm2/(V s) for the a-IGZO TFTs used in commercial organic light-emitting diode TVs is not satisfactory for high-resolution display applications such as virtual and augmented reality applications. In general, the electrical properties of amorphous oxide semiconductors are strongly dependent on their chemical composition; the indium (In)-rich IGZO achieves a high mobility of 50 cm2/(V s). However, the In-rich IGZO TFTs possess another issue of negative threshold voltage owing to intrinsically high carrier density. Therefore, the development of an effective way of carrier density suppression in In-rich IGZO will be a key strategy to the realization of practical high-mobility a-IGZO TFTs. In this study, we report that In-rich IGZO TFTs with vertically stacked InOx, ZnOx, and GaOx atomic layers exhibit excellent performances such as saturation mobilities of ∼74 cm2/(V s), threshold voltage of -1.3 V, on/off ratio of 8.9 × 108, subthreshold swing of 0.26 V/decade, and hysteresis of 0.2 V, while keeping a reasonable carrier density of ∼1017 cm-3. We found that the vertical dimension control of IGZO active layers is critical to TFT performance parameters such as mobility and threshold voltage. This study illustrates the potential advantages of atomic layer deposition processes for fabricating ultrahigh-mobility oxide TFTs.

20.
Chem Sci ; 10(22): 5712-5718, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31293756

RESUMO

Ruthenium (Ru) loaded catalysts are of significant interest for ammonia synthesis under mild reaction conditions. The B5 sites have been reported as the active sites for ammonia formation, i.e., Ru with other coordinations were inactive, which has limited the utilization efficiency of Ru metal. The implantation of Ru into intermetallic compounds is considered to be a promising approach to tune the catalytic activity and utilization efficiency of Ru. Here we report an acid-durable electride, LnRuSi (Ln = La, Ce, Pr and Nd), as a B5-site-free Ru catalyst. The active Ru plane with a negative charge is selectively exposed by chemical etching using disodium dihydrogen ethylenediaminetetraacetate (EDTA-2Na) acid, which leads to 2-4-fold enhancement in the ammonia formation rate compared with that of the original catalyst. The turnover frequency (TOF) of LnRuSi is estimated to be approximately 0.06 s-1, which is 600 times higher than that of pure Ru powder. Density functional theory (DFT) calculations revealed that the dissociation of N2 occurs easily on the exposed Ru plane of LaRuSi. This systematic study provides firm evidence that layered Ru with a negative charge in LnRuSi is a new type of active site that differs significantly from B5 sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA