Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Am Chem Soc ; 145(44): 24035-24051, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37874670

RESUMO

Establishing a technological platform for creating clinical compounds inhibiting intracellular protein-protein interactions (PPIs) can open the door to many valuable drugs. Although small molecules and antibodies are mainstream modalities, they are not suitable for a target protein that lacks a deep cavity for a small molecule to bind or a protein found in intracellular space out of an antibody's reach. One possible approach to access these targets is to utilize so-called middle-size cyclic peptides (defined here as those with a molecular weight of 1000-2000 g/mol). In this study, we validated a new methodology to create oral drugs beyond the rule of 5 for intracellular tough targets by elucidating structural features and physicochemical properties for drug-like cyclic peptides and developing library technologies to afford highly N-alkylated cyclic peptide hits. We discovered a KRAS inhibitory clinical compound (LUNA18) as the first example of our platform technology.


Assuntos
Peptídeos Cíclicos , Peptídeos Cíclicos/química
2.
J Am Chem Soc ; 145(30): 16610-16620, 2023 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-37463267

RESUMO

Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.


Assuntos
Peptídeos , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células CACO-2 , Peptídeos/farmacologia , Peptídeos/metabolismo , Peptídeos Cíclicos/química , Conformação Molecular
3.
Mol Cancer Ther ; 17(12): 2519-2529, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30242093

RESUMO

Members of the tropomyosin receptor kinase (TRK) family are expressed in their constitutively activated forms as a result of a gene fusion that occurs across a wide variety of cancer types. We have identified CH7057288 as a potent and selective TRK inhibitor that belongs to a novel chemical class. CH7057288 showed selective inhibitory activity against TRKA, TRKB, and TRKC in cell-free kinase assays and suppressed proliferation of TRK fusion-positive cell lines, but not that of TRK-negative cell lines. Strong in vivo tumor growth inhibition was observed in subcutaneously implanted xenograft tumor models of TRK fusion-positive cells. Furthermore, in an intracranial implantation model mimicking brain metastasis, CH7057288 significantly induced tumor regression and improved event-free survival. Recently, resistant mutations in the kinase domain of TRK have been reported in patients who show disease progression after treatment with the TRK inhibitors now under clinical development. Our compound maintained similar levels of in vitro and in vivo activity against one of these resistant mutants as it did to wild-type TRK. An X-ray crystal structure of the TRKA and CH7057288 complex supported the activity against the mutant. In addition, gene expression analysis revealed that CH7057288 suppressed MAPK and E2F pathways as downstream signaling of TRK fusion. Therefore, CH7057288 could be a promising therapeutic agent for TRK fusion-positive cancer.


Assuntos
Benzofuranos/farmacologia , Neoplasias/patologia , Proteínas de Fusão Oncogênica/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação/genética , Proteínas Quinases/química , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Mol Cancer Ther ; 17(10): 2217-2225, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045926

RESUMO

FGFR2 gene is frequently amplified in gastric cancer. Recently, targeting FGFR2 has drawn attention as a form of gastric cancer therapy, and FGFR-selective inhibitors have shown promising efficacy in clinical studies. Because overcoming acquired resistance is a common problem with molecular targeting drugs, we investigated a resistant mechanism of FGFR inhibitors using the gastric cancer cell line SNU-16, which harbors FGFR2 amplification. We established single-cell clones of FGFR inhibitor-resistant SNU-16 (AZD-R) by continuous exposure to AZD4547, a selective FGFR inhibitor. To screen the genetic alterations acquired in AZD-R, we ran a comparative genomic hybridization assay and found an amplification of Chr7q34 region. The chromosomal breakpoints were located between the 12th and the 13th exon of jumonji C domain containing histone demethylase 1 homolog D (JHDM1D) and between the 3rd and the 4th exon of BRAF We sequenced cDNA of the AZD-R clones and found fusion kinase JHDM1D-BRAF, which has previously been identified in primary ovarian cancer. Because JHDM1D-BRAF fusion lacks a RAS-binding domain, the dimerization of JHDM1D-BRAF was enhanced. A cell growth inhibition assay using MEK inhibitors and RAF-dimer inhibitors indicated the dependence of AZD-R clones for growth on the MAPK pathway. Our data provide a clinical rationale for using a MEK or RAF dimer inhibitor to treat FGFR2-amplified gastric cancer patients who have acquired resistance through the JHDN1D-BRAF fusion. Mol Cancer Ther; 17(10); 2217-25. ©2018 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Gástricas/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Hibridização Genômica Comparativa , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia
5.
Mol Cancer Ther ; 14(12): 2831-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26438159

RESUMO

Drugs that target specific gene alterations have proven beneficial in the treatment of cancer. Because cancer cells have multiple resistance mechanisms, it is important to understand the downstream pathways of the target genes and monitor the pharmacodynamic markers associated with therapeutic efficacy. We performed a transcriptome analysis to characterize the response of various cancer cell lines to a selective fibroblast growth factor receptor (FGFR) inhibitor (CH5183284/Debio 1347), a mitogen-activated protein kinase kinase (MEK) inhibitor, or a phosphoinositide 3-kinase (PI3K) inhibitor. FGFR and MEK inhibition produced similar expression patterns, and the extracellular signal-regulated kinase (ERK) gene signature was altered in several FGFR inhibitor-sensitive cell lines. Consistent with these findings, CH5183284/Debio 1347 suppressed phospho-ERK in every tested FGFR inhibitor-sensitive cell line. Because the mitogen-activated protein kinase (MAPK) pathway functions downstream of FGFR, we searched for a pharmacodynamic marker of FGFR inhibitor efficacy in a collection of cell lines with the ERK signature and identified dual-specificity phosphatase 6 (DUSP6) as a candidate marker. Although a MEK inhibitor suppressed the MAPK pathway, most FGFR inhibitor-sensitive cell lines are insensitive to MEK inhibitors and we found potent feedback activation of several pathways via FGFR. We therefore suggest that FGFR inhibitors exert their effect by suppressing ERK signaling without feedback activation. In addition, DUSP6 may be a pharmacodynamic marker of FGFR inhibitor efficacy in FGFR-addicted cancers.


Assuntos
Benzimidazóis/administração & dosagem , Proteínas de Neoplasias/biossíntese , Neoplasias/tratamento farmacológico , Neoplasias/genética , Pirazóis/administração & dosagem , Receptores de Fatores de Crescimento de Fibroblastos/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
6.
Mol Cancer Ther ; 13(11): 2547-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25169980

RESUMO

The FGF receptors (FGFR) are tyrosine kinases that are constitutively activated in a subset of tumors by genetic alterations such as gene amplifications, point mutations, or chromosomal translocations/rearrangements. Recently, small-molecule inhibitors that can inhibit the FGFR family as well as the VEGF receptor (VEGFR) or platelet-derived growth factor receptor (PDGFR) family displayed clinical benefits in cohorts of patients with FGFR genetic alterations. However, to achieve more potent and prolonged activity in such populations, a selective FGFR inhibitor is still needed. Here, we report the identification of CH5183284/Debio 1347, a selective and orally available FGFR1, FGFR2, and FGFR3 inhibitor that has a unique chemical scaffold. By interacting with unique residues in the ATP-binding site of FGFR1, FGFR2, or FGFR3, CH5183284/Debio 1347 selectively inhibits FGFR1, FGFR2, and FGFR3 but does not inhibit kinase insert domain receptor (KDR) or other kinases. Consistent with its high selectivity for FGFR enzymes, CH5183284/Debio 1347 displayed preferential antitumor activity against cancer cells with various FGFR genetic alterations in a panel of 327 cancer cell lines and in xenograft models. Because of its unique binding mode, CH5183284/Debio 1347 can inhibit FGFR2 harboring one type of the gatekeeper mutation that causes resistance to other FGFR inhibitors and block FGFR2 V564F-driven tumor growth. CH5183284/Debio 1347 is under clinical investigation for the treatment of patients harboring FGFR genetic alterations.


Assuntos
Antineoplásicos/farmacologia , Benzimidazóis/farmacologia , Pirazóis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Cell Sci ; 122(Pt 21): 3923-30, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19825936

RESUMO

During lymphatic development, Prox1 plays central roles in the differentiation of blood vascular endothelial cells (BECs) into lymphatic endothelial cells (LECs), and subsequently in the maturation and maintenance of lymphatic vessels. However, the molecular mechanisms by which Prox1 elicits these functions remain to be elucidated. Here, we identified FoxC2 and angiopoietin-2 (Ang2), which play important roles in the maturation of lymphatic vessels, as novel targets of Prox1 in mouse embryonic-stem-cell-derived endothelial cells (MESECs). Furthermore, we found that expression of HoxD8 was significantly induced by Prox1 in MESECs, a finding confirmed in human umbilical vein endothelial cells (HUVECs) and human dermal LECs (HDLECs). In mouse embryos, HoxD8 expression was significantly higher in LECs than in BECs. In a model of inflammatory lymphangiogenesis, diameters of lymphatic vessels of the diaphragm were increased by adenovirally transduced HoxD8. We also found that HoxD8 induces Ang2 expression in HDLECs and HUVECs. Moreover, we found that HoxD8 induces Prox1 expression in HUVECs and that knockdown of HoxD8 reduces this expression in HDLECs, suggesting that Prox1 expression in LECs is maintained by HoxD8. These findings indicate that transcriptional networks of Prox1 and HoxD8 play important roles in the maturation and maintenance of lymphatic vessels.


Assuntos
Angiopoietina-2/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Linfangiogênese , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Angiopoietina-2/genética , Animais , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Endotélio Linfático/citologia , Endotélio Linfático/embriologia , Endotélio Linfático/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
8.
J Cell Sci ; 122(Pt 18): 3303-11, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706681

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) plays crucial roles in vasculogenesis, a process involving cell proliferation, migration and differentiation. However, the molecular mechanism by which VEGFR2 signaling directs vascular endothelial differentiation of VEGFR2(+) mesodermal progenitors is not well understood. In this study, we examined the signal transduction pathway downstream of VEGFR2 for endothelial differentiation using an in vitro differentiation system of mouse embryonic stem-cell-derived VEGFR2(+) cells. Using chimeric receptors composed of VEGFR2 and VEGFR3, the third member of the VEGFR family, we found that signaling through tyrosine 1175 (Y1175, corresponding to mouse Y1173) of VEGFR2 is crucial for two processes of endothelial differentiation: endothelial specification of VEGFR2(+) progenitors, and subsequent survival of endothelial cells (ECs). Furthermore, we found that phospholipase Cgamma1 (PLCgamma1), which interacts with VEGFR2 through phosphorylated Y1175, is an inducer of endothelial specification. In contrast to VEGFR2, VEGFR3 does not transmit a signal for endothelial differentiation of VEGFR2(+) cells. We found that VEGFR3 does not activate PLCgamma1, although VEGFR3 has the ability to support endothelial cell survival. Taken together, these findings indicate that VEGFR2-PLCgamma1 signal relay gives rise to the unique function of VEGFR2, thus enabling endothelial differentiation from vascular progenitors.


Assuntos
Vasos Sanguíneos/citologia , Padronização Corporal , Células Endoteliais/enzimologia , Fosfolipase C gama/metabolismo , Células-Tronco/citologia , Células-Tronco/enzimologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Células Endoteliais/citologia , Ativação Enzimática , Humanos , Espaço Intracelular/metabolismo , Camundongos , Modelos Biológicos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/metabolismo , Fosfotirosina/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
9.
J Cell Biol ; 181(1): 131-41, 2008 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-18391074

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) transmits signals of crucial importance to vasculogenesis, including proliferation, migration, and differentiation of vascular progenitor cells. Embryonic stem cell-derived VEGFR2(+) mesodermal cells differentiate into mural lineage in the presence of platelet derived growth factor (PDGF)-BB or serum but into endothelial lineage in response to VEGF-A. We found that inhibition of H-Ras function by a farnesyltransferase inhibitor or a knockdown technique results in selective suppression of VEGF-A-induced endothelial specification. Experiments with ex vivo whole-embryo culture as well as analysis of H-ras(-/-) mice also supported this conclusion. Furthermore, expression of a constitutively active H-Ras[G12V] in VEGFR2(+) progenitor cells resulted in endothelial differentiation through the extracellular signal-related kinase (Erk) pathway. Both VEGF-A and PDGF-BB activated Ras in VEGFR2(+) progenitor cells 5 min after treatment. However, VEGF-A, but not PDGF-BB, activated Ras 6-9 h after treatment, preceding the induction of endothelial markers. VEGF-A thus activates temporally distinct Ras-Erk signaling to direct endothelial specification of VEGFR2(+) vascular progenitor cells.


Assuntos
Células Endoteliais/citologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Inibidores Enzimáticos/farmacologia , Metionina/análogos & derivados , Metionina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
J Biol Chem ; 282(28): 20492-501, 2007 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-17510063

RESUMO

Transforming growth factor-beta (TGF-beta) signaling is controlled by a variety of regulators that target either signaling receptors or activated Smad complexes. Among the negative regulators, Smad7 antagonizes TGF-beta signaling mainly through targeting the signaling receptors, whereas SnoN and c-Ski repress signaling at the transcriptional level through inactivation of Smad complexes. We previously found that Arkadia is a positive regulator of TGF-beta signaling that induces ubiquitin-dependent degradation of Smad7 through its C-terminal RING domain. We report here that Arkadia induces degradation of SnoN and c-Ski in addition to Smad7. Arkadia interacts with SnoN and c-Ski in their free forms as well as in the forms bound to Smad proteins, and constitutively down-regulates levels of their expression. Arkadia thus appears to effectively enhance TGF-beta signaling through simultaneous down-regulation of two distinct types of negative regulators, Smad7 and SnoN/c-Ski, and may play an important role in determining the intensity of TGF-beta family signaling in target cells.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Ubiquitina/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a DNA/genética , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Smad7/genética , Proteína Smad7/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA